Question

Suppose that the widget industry is a Cournot duopoly. The industry demand curve is: P =...

Suppose that the widget industry is a Cournot duopoly. The industry demand curve is: P = 561 – 32Q, where Q = q1 + q2 is industry output.

Marginal cost is 20 for each firm.

a) Calculate the equilibrium industry price and the profit levels for each firm.

b) Suppose that Firm 1 reduces its marginal cost to 10. Calculate the new price and profit levels.

c) Calculate the HHI before and after the cost reduction by Firm 1. Is there a correlation between the HHI and industry profits?

d) If so, does the correlation mean that increases in d industry concentration imply harm to consumers?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 – 3(Q1 +...
The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 – 3(Q1 + Q2) and costs are C1(Q1) = 26Q1 and C2(Q2) = 32Q2. a. Determine the reaction function for each firm. Firm 1: Q1 =  -  Q2 Firm 2: Q2 =  -  Q1 b. Calculate each firm’s equilibrium output. Firm 1: Firm 2: c. Calculate the equilibrium market price. $ d. Calculate the profit each firm earns in equilibrium. Firm 1: $ Firm 2: $
The demand function facing a duopoly is P=1000-3(q1 + q2 ). Suppose marginal cost is 10...
The demand function facing a duopoly is P=1000-3(q1 + q2 ). Suppose marginal cost is 10 for each firm and fixed costs are 50 for each. Find the optimal outputs, price, and profits when firm 1 is a von Stackelberg leader. Show your work.
The inverse market demand in a homogeneous-product Cournot duopoly is P=200-3(Q1+Q2) and costs are C1(Q1)=26Q1 and...
The inverse market demand in a homogeneous-product Cournot duopoly is P=200-3(Q1+Q2) and costs are C1(Q1)=26Q1 and C2(Q2)=32Q2, find the optimal output, price, and maximized profit if the two oligopolists formed a cartel whose MC is the average between the oligopolists’ marginal costs. Assume the cartel splits profit equally among oligopolists.
Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand...
Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand equation is given as P = 80 - 2Q 1 - 2Q 2. The firms' marginal cost are identical and given by MCi(Qi) = 4Qi, where i is either firm 1 or firm 2. a. Q1 = 80 - 4Q2 and Q2 = 80 - 4Q1. b. Q1 = 10 - (1/4)Q2 and Q2 = 10 - (1/4)Q1. c. Q1 = 80 - 2Q2...
A duopoly faces a market demand of p=120minus−Q. Firm 1 has a constant marginal cost of...
A duopoly faces a market demand of p=120minus−Q. Firm 1 has a constant marginal cost of MC1equals=​$4040. Firm​ 2's constant marginal cost is MC2=​$80. Calculate the output of each​ firm, market​ output, and price if there is​ (a) a collusive equilibrium or​ (b) a Cournot equilibrium. The collusive equilibrium occurs where q1 equals _____ and q2 equals ________   ​(Enter numeric responses using real numbers rounded to two decimal​ places)
What is the homogeneous-good duopoly Cournot equilibrium if the market demand function is Q = 1,000...
What is the homogeneous-good duopoly Cournot equilibrium if the market demand function is Q = 1,000 - 1,000p, and each firm's marginal cost is $0.28 per unit? The Cournot-Nash equilibrium occurs where q 1 = ? and q 2 = ?. (Enter numeric responses using real numbers rounded to two decimal places.) Solve for q1 and q2 and determine the equilibrium price.
Consider a Cournot model of a duopoly where Firm ?? and Firm ?? operate with asymmetric...
Consider a Cournot model of a duopoly where Firm ?? and Firm ?? operate with asymmetric costs. The inverse market demand function is ?? = ?? ???, the marginal cost of Firm ?? is zero, the marginal cost of Firm ?? is ??, and we impose ?? > ?? > 0 and ?? > 2??. The market output ?? is equal to ???? +????, where ???? and ???? are the output levels of Firms ?? and ??, respectively. There are...
Answer the following question(s) based on this information: Two firms in a Cournot duopoly produce quantities...
Answer the following question(s) based on this information: Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand equation is given as P = 80 - 2Q 1 - 2Q 2. The firms' marginal cost are identical and given by MCi(Qi) = 4Qi, where i is either firm 1 or firm 2. Based on this information firm 1 and 2's respective optimal Cournot quantity will be: a. Q1 = 40 and Q2 = 40...
The inverse market demand in a homogeneous-product Cournot duopoly is P = 154 – 3(Q1 +...
The inverse market demand in a homogeneous-product Cournot duopoly is P = 154 – 3(Q1 + Q2) and costs are Company 1,  C1(Q1) = 10Q1 and Company 2 C2(Q2) = 18Q2. Calculate the equilibrium output for Company 2 Round all calculations to 1 decimal
In a homogeneous products duopoly, each firm has a marginal cost curve MC = 10 +...
In a homogeneous products duopoly, each firm has a marginal cost curve MC = 10 + Qi, i = 1, 2. The market demand curve is P = 35 - Q, where Q = Q1 + Q2. What are the Cournot equilibrium price in this market?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT