Question

Consider a Cournot model of a duopoly where Firm ?? and Firm ?? operate with asymmetric...

Consider a Cournot model of a duopoly where Firm ?? and Firm ?? operate with asymmetric costs. The inverse market demand function is ?? = ?? ???, the marginal cost of Firm ?? is zero, the marginal cost of Firm ?? is ??, and we impose ?? > ?? > 0 and ?? > 2??. The market output ?? is equal to ???? +????, where ???? and ???? are the output levels of Firms ?? and ??, respectively. There are no fixed costs.

1. Show the best-response function of each firm.

2. Calculate the profit-maximizing output level for each firm.

3. Show that the more efficient firm (i.e., the one with less marginal cost) will supply more.

4. What is the market output? What is the market price?

5. Calculate the profit of each firm.

6. Show that the more efficient firm will have a higher profit.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the Cournot duopoly model where the inverse demand is P(Q) = a – Q but...
Consider the Cournot duopoly model where the inverse demand is P(Q) = a – Q but firms have asymmetric marginal costs: c1 for firm 1 and c2 for firm 2. What is the Nash equilibrium if 0 < ci < a/2 for each firm? What if c1 < c2 < a, but 2c2 > a + c1?
Consider the Cournot duopoly model where the inverse demand function is given by P(Q) = 100-Q...
Consider the Cournot duopoly model where the inverse demand function is given by P(Q) = 100-Q but the firms have asymmetric marginal costs: c1= 40 and c2= 60. What is the Nash equilibrium of this game?
Consider an asymmetric Cournot duopoly game, where the two firms have different costs of production. Firm...
Consider an asymmetric Cournot duopoly game, where the two firms have different costs of production. Firm 1 selects quantity q1 and pays the production cost of 2q1 . Firm 2 selects quantity q2 and pays the production cost 4q2 . The market price is given by p = 12 − q1 − q2 . Thus, the payoff functions are u1 (q1,q2) = (12 − q1 − q2 ) q1 − 2q1 and u2 ( q1 , q2 ) = (12...
1. Consider a Cournot duopoly model with two firms, 1 and 2, selling the same product...
1. Consider a Cournot duopoly model with two firms, 1 and 2, selling the same product and facing the inverse market demand p(Q) = 270 - 4Q, where Q is the total quantity sold in the market. The firms have the same constant marginal cost c = 30. The firms simultaneously and independently decide how much to sell. (e) Suppose the two firms for a cartel and agree to maximizes total profit and divide it equally. Find the each firm’s...
Cournot Model: Consider a duopoly where 2 firms produce a homogeneous product. Under the assumption that...
Cournot Model: Consider a duopoly where 2 firms produce a homogeneous product. Under the assumption that one firm’s decision on output would depend on the other firm’s output, a market demand is given as P = 90 - Q where Q = QA + QB (QA is the quantity of a firm A and QB is the quantity of a firm B). Find the quantity and the price in this duopoly when MC of both firms = 0.
Consider a Cournot model with two firms, firm 1 and firm 2, producing quantities q1 and...
Consider a Cournot model with two firms, firm 1 and firm 2, producing quantities q1 and q2, respectively. Suppose the inverse market demand function is: P = 450 – Q where Q denotes the total quantity supplied on the market. Also, each firm i = 1,2 has a total cost function c(qi) = 30qi. a) What is the Nash equilibrium of this Cournot game ? What is the market prices ? Compute each firm’s profit and the industry profit. b)...
Consider a duopoly with each firm having different marginal costs. Each firm has a marginal cost...
Consider a duopoly with each firm having different marginal costs. Each firm has a marginal cost curve MCi=20+Qi for i=1,2. The market demand curve is P=26−Q where Q=Q1+Q2. What are the Cournot equilibrium quantities and price in this market? What would be the equilibrium price in this market if the two firms acted as a profit-maximizing cartel ((i.e., attempt to set prices and outputs together to maximize total industry profits ))? What would be the equilibrium price in this market...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q,...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q, where Q = q1 + q2 is the aggregate quantity on the market. Both firms have total costs ci(qi) = cqi, but demand is uncertain: it is High (a = aH) with probability theta and low (a= aL) with probability 1 - theta. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All this is...
Suppose that the widget industry is a Cournot duopoly. The industry demand curve is: P =...
Suppose that the widget industry is a Cournot duopoly. The industry demand curve is: P = 561 – 32Q, where Q = q1 + q2 is industry output. Marginal cost is 20 for each firm. a) Calculate the equilibrium industry price and the profit levels for each firm. b) Suppose that Firm 1 reduces its marginal cost to 10. Calculate the new price and profit levels. c) Calculate the HHI before and after the cost reduction by Firm 1. Is...
The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 – 3(Q1 +...
The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 – 3(Q1 + Q2) and costs are C1(Q1) = 26Q1 and C2(Q2) = 32Q2. a. Determine the reaction function for each firm. Firm 1: Q1 =  -  Q2 Firm 2: Q2 =  -  Q1 b. Calculate each firm’s equilibrium output. Firm 1: Firm 2: c. Calculate the equilibrium market price. $ d. Calculate the profit each firm earns in equilibrium. Firm 1: $ Firm 2: $