Question

Answer the following question(s) based on this information: Two firms in a Cournot duopoly produce quantities...

Answer the following question(s) based on this information: Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand equation is given as P = 80 - 2Q 1 - 2Q 2. The firms' marginal cost are identical and given by MCi(Qi) = 4Qi, where i is either firm 1 or firm 2. Based on this information firm 1 and 2's respective optimal Cournot quantity will be: a. Q1 = 40 and Q2 = 40 b. Q1 = 8 and Q2 = 8 c. Q1 = 16 and Q2 = 16 d. Q1 = 10 and Q2 = 10

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand...
Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand equation is given as P = 80 - 2Q 1 - 2Q 2. The firms' marginal cost are identical and given by MCi(Qi) = 4Qi, where i is either firm 1 or firm 2. a. Q1 = 80 - 4Q2 and Q2 = 80 - 4Q1. b. Q1 = 10 - (1/4)Q2 and Q2 = 10 - (1/4)Q1. c. Q1 = 80 - 2Q2...
A product is produced by two profit-maximizing firms in a Stackelberg duopoly: firm 1 chooses a...
A product is produced by two profit-maximizing firms in a Stackelberg duopoly: firm 1 chooses a quantity q1 ? 0, then firm 2 observes q1 and chooses a quantity q2 ? 0. The market price is determined by the following formula: P ( Q ) = 4 ? Q , where Q = q(1) +q(2) . The cost to firm i of producing q i is Ci( qi ) = q^2)i . (Note: the only difference between this problem and...
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function...
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function is given by P(Q)=100-q, where Q=q1+q2 and qi denotes the quantity produced by firm i for all iÎ {1, 2} and the cost function is given by ci(qi)=10qi. Describe this problem as a normal-form game. Find pure-strategy Nash Equilibria for both firms.
Three firms produce ethanol and compete in a Cournot oligopoly. Each firm has the same cost...
Three firms produce ethanol and compete in a Cournot oligopoly. Each firm has the same cost function, MC(Q) = 1/2Q.Market demand is given by Q=600-P.The quantities produced by the three firms are respectively Q1,Q2,Q3 (a) what is frim 1's optimal quantity as a function of Q2 and Q3 (b) what is the total quantity produced by all three firms?
Two firms compete as a Stackelberg duopoly. Firm 1 is the market leader. The inverse market...
Two firms compete as a Stackelberg duopoly. Firm 1 is the market leader. The inverse market demand they face is P = 62 - 2Q, where Q=Q1+Q2. The cost function for each firm is C(Q) = 6Q. Given that firm 2's reaction function is given by Q2 = 14 - 0.5Q1, the optimal outputs of the two firms are: a. QL = 9.33; QF = 9.33. b. QL = 14; QF = 7. c. QL = 6; QF = 3....
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q,...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q, where Q = q1 + q2 is the aggregate quantity on the market. Both firms have total costs ci(qi) = cqi, but demand is uncertain: it is High (a = aH) with probability theta and low (a= aL) with probability 1 - theta. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All this is...
Suppose there are two firms operating in a market. The firms produce identical products, and the...
Suppose there are two firms operating in a market. The firms produce identical products, and the total cost for each firm is given by C = 10qi, i = 1,2, where qi is the quantity of output produced by firm i. Therefore the marginal cost for each firm is constant at MC = 10. Also, the market demand is given by P = 106 –2Q, where Q= q1 + q2 is the total industry output. The following formulas will be...
Consider an asymmetric Cournot duopoly game, where the two firms have different costs of production. Firm...
Consider an asymmetric Cournot duopoly game, where the two firms have different costs of production. Firm 1 selects quantity q1 and pays the production cost of 2q1 . Firm 2 selects quantity q2 and pays the production cost 4q2 . The market price is given by p = 12 − q1 − q2 . Thus, the payoff functions are u1 (q1,q2) = (12 − q1 − q2 ) q1 − 2q1 and u2 ( q1 , q2 ) = (12...
Two firms, firm 1 & firm 2, in a Stackelberg sequential duopoly are facing the market...
Two firms, firm 1 & firm 2, in a Stackelberg sequential duopoly are facing the market demand given by P = 140 – 0.4Q, where P is the market price and Q is the market quantity demanded. Firm 1 has (total) cost of production given by C(q1) = 200 + 15q1, where q1 is the quantity produced by firm 1. Firm 2 has (total) cost of production given by C(q2) = 200 + 10q2, where q2 is the quantity produced...
Consider the following market: Two firms compete in quantities, i.e., they are Cournot competitors. The firms...
Consider the following market: Two firms compete in quantities, i.e., they are Cournot competitors. The firms produce at constant marginal costs equal to 20. The inverse demand curve in the market is given by P(q) = 260 − q. a. Find the equilibrium quantities under Cournot competition as well as the quantity that a monopolist would produce. Calculate the equilibrium profits in Cournot duopoly and the monopoly profits. Suppose that the firms compete in this market for an infinite number...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT