Question

In a random sample of 25 ​people, the mean commute time to work was 33.2 minutes...

In a random sample of 25 ​people, the mean commute time to work was 33.2 minutes and the standard deviation was 7.1 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 95​% confidence interval for the population mean muμ.

What is the margin of error of muμ​?

Interpret the results.

The confidence interval for the population mean

muμ

is (____,_______ )

​(Round to one decimal place as​ needed.)

The margin of error of

muμ is _____.

​(Round to one decimal place as​ needed.)

Interpret the results.

A. With 95​% ​confidence, it can be said that the commute time is between the bounds of the confidence interval.

B. If a large sample of people are taken approximately 95​% of them will have commute times between the bounds of the confidence interval.

C. With 95​% ​confidence, it can be said that the population mean commute time is between the bounds of the confidence interval.

D.It can be said that 95​%of people have a commute time between the bounds of the confidence interval.

Homework Answers

Answer #1

Degrees of freedom (df) = n-1 = 25 - 1 = 24

t critical value at 0.05 significance level with 24 df = 2.064

95% confidence interval for is

- t * S / sqrt(n) < < + t * S / sqrt(n)

33.2 - 2.064 * 7.1 / sqrt(25) < < 33.2 + 2.064 * 7.1 / sqrt(25)

30.3 < < 36.1

95% CI is ( 30.3 , 36.1)

Margin of error = t * S / sqrt(n)

= 2.064 * 7.1 / sqrt(25)

= 2.9

Interpretation -

With 95% confidence, it can be said that the population mean commute tie is between the

bounds of the confidence interval.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a random sample of 27 ​people, the mean commute time to work was 33.3 minutes...
In a random sample of 27 ​people, the mean commute time to work was 33.3 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results. The confidence interval for the population mean μ (Round to one decimal place as​ needed.) The margin of error of μ ​Round to one decimal...
In a random sample of 25 ​people, the mean commute time to work was 30.6 minutes...
In a random sample of 25 ​people, the mean commute time to work was 30.6 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 95​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results. 1. The confidence interval for the population mean μ is (_,_) 2. The margin of error of μ is __ 3. Interpret the results. A.It...
In a random sample of 21 ​people, the mean commute time to work was 31.3 minutes...
In a random sample of 21 ​people, the mean commute time to work was 31.3 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results. The confidence interval for the population mean mu is left parenthesis nothing comma nothing right parenthesis . ​(Round to one decimal place as​ needed.) The...
in a random sample of 17 people, the mean commute time to work was 31.2 minutes...
in a random sample of 17 people, the mean commute time to work was 31.2 minutes and the standard deviation was 7.1 minutes.Assume the population is normally distributed and use a t-distribution to construct a 80% confidence interval for the population mean. what is the margin of error of the mean? interpret the results. the confidence interval for the population mean is ?
In a random sample of 28 ​people, the mean commute time to work was 33.6 minutes...
In a random sample of 28 ​people, the mean commute time to work was 33.6 minutes and the standard deviation was 7.1 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
in a random sample of 24 people, the mean commute time to work was 33.7 minutes...
in a random sample of 24 people, the mean commute time to work was 33.7 minutes and the standard deviation was 7.1 minuets . assume the population is normally distributed and use a t-distribution to construct a 99% confidence interval for the population mean. what is the margin of error of the mean? interpret the results.
In a random sample of 88 ​people, the mean commute time to work was 36.536.5 minutes...
In a random sample of 88 ​people, the mean commute time to work was 36.536.5 minutes and the standard deviation was 7.27.2 minutes. A 9898​% confidence interval using the​ t-distribution was calculated to be left parenthesis 28.9 comma 44.1 right parenthesis(28.9,44.1). After researching commute times to​ work, it was found that the population standard deviation is 8.78.7 minutes. Find the margin of error and construct a 9898​% confidence interval using the standard normal distribution with the appropriate calculations for a...
In a random sample of 18 ​people, the mean commute time to work was 33.1 minutes...
In a random sample of 18 ​people, the mean commute time to work was 33.1 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean mu . What is the margin of error of mu? Interpret the results. The confidence interval for the population mean mu is: The margin of error of mu is:
In a random sample of 20 ​people, the mean commute time to work was 32.6 minutes...
In a random sample of 20 ​people, the mean commute time to work was 32.6 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80​% confidence interval for the population mean mu. What is the margin of error of u​? Interpret the results. The confidence interval for the population mean u is? What is the margin of error?
In a random sample of 28 people, the mean commute time to work was 33.5 minutes...
In a random sample of 28 people, the mean commute time to work was 33.5 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 90​% confidence interval for the population mean muμ. What is the margin of error ofmuμ​?