Question

In a random sample of 21 people, the mean commute time to work was 31.3 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a t-distribution to construct a 98% confidence interval for the population mean mu. What is the margin of error of mu? Interpret the results. The confidence interval for the population mean mu is left parenthesis nothing comma nothing right parenthesis . (Round to one decimal place as needed.) The margin of error of mu is

Answer #1

.

margin of error is 3.972

margin of error is 4.0 approximately.

please like ??

In a random sample of 18 people, the mean commute time to work
was 33.1 minutes and the standard deviation was 7.2 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 98% confidence interval for the population mean mu .
What is the margin of error of mu? Interpret the results.
The confidence interval for the population mean mu is:
The margin of error of mu is:

In a random sample of 8 people, the mean commute time to work
was 33.5 minutes and the standard deviation was 7.2 minutes. A 90%
confidence interval using the t-distribution was calculated to be
left parenthesis 28.7 comma 38.3 right parenthesis. After
researching commute times to work, it was found that the
population standard deviation is 9.3 minutes. Find the margin of
error and construct a 90% confidence interval using the standard
normal distribution with the appropriate calculations for a...

In a random sample of 8 people, the mean commute time to work
was 35.5 minutes and the standard deviation was 7.2 minutes. A 95%
confidence interval using the t-distribution was calculated to be
left parenthesis 29.5 comma 41.5 right parenthesis. After
researching commute times to work, it was found that the
population standard deviation is 9.2 minutes. Find the margin of
error and construct a 95% confidence interval using the standard
normal distribution with the appropriate calculations for a...

In a random sample of 21 ?people, the mean commute time to work
was 31.5 minutes and the standard deviation was 7.2 minutes. Assume
the population is normally distributed and use a? t-distribution to
construct a 80?% confidence interval for the population mean ?.
What is the margin of error of ???
Interpret the results.

In a random sample of 18 people, the mean commute time to work
was 32.4 minutes and the standard deviation was 7.2 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 99% confidence interval for the population mean mu.
What is the margin of error of mu? Interpret the results.

In a random sample of 27 people, the mean commute time to work
was 33.3 minutes and the standard deviation was 7.3 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 80% confidence interval for the population mean mu.
What is the margin of error of mu? Interpret the results.
The confidence interval for the population mean μ
(Round to one decimal place as needed.)
The margin of error of μ
Round to one decimal...

In a random sample of
88
people, the mean commute time to work was
36.536.5
minutes and the standard deviation was
7.27.2
minutes. A
9898%
confidence interval using the t-distribution was calculated to
be
left parenthesis 28.9 comma 44.1 right
parenthesis(28.9,44.1).
After researching commute times to work, it was found that the
population standard deviation is
8.78.7
minutes. Find the margin of error and construct a
9898%
confidence interval using the standard normal distribution with
the appropriate calculations for a...

In a random sample of 20 people, the mean commute time to work
was 32.6 minutes and the standard deviation was 7.3 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 80% confidence interval for the population mean mu.
What is the margin of error of u? Interpret the results.
The confidence interval for the population mean u is?
What is the margin of error?

In a random sample of 29 people, the mean commute time to work
was 30.1 minutes and the standard deviation was 7.2 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 80% confidence interval for the population mean μ?
What is the margin of error of μ? Interpret the results.

In a random sample of 25 people, the mean commute time to work
was 30.6 minutes and the standard deviation was 7.2 minutes.
Assume the population is normally distributed and use a
t-distribution to construct a 95% confidence interval for the
population mean μ.
What is the margin of error of μ? Interpret the results.
1. The confidence interval for the population mean μ is
(_,_)
2. The margin of error of μ is __
3. Interpret the results.
A.It...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 3 minutes ago

asked 10 minutes ago

asked 23 minutes ago

asked 28 minutes ago

asked 35 minutes ago

asked 40 minutes ago

asked 40 minutes ago

asked 55 minutes ago

asked 59 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago