Question

in a random sample of 17 people, the mean commute time to work was 31.2 minutes and the standard deviation was 7.1 minutes.Assume the population is normally distributed and use a t-distribution to construct a 80% confidence interval for the population mean. what is the margin of error of the mean? interpret the results. the confidence interval for the population mean is ?

Answer #1

Since , the population standard deviation is not known

Therefore , use t-distribution.

Now , df=degrees of freedom=n-1=17-1=16

The critical value is , ; From t-table

The margin of error is ,

The 80% confidence interval for the population mean is ,

Interpretation : There is 80% confident that the true population mean lies in the interval (28.8977,33.5023)

In a random sample of 28 people, the mean commute time to work
was 33.6 minutes and the standard deviation was 7.1 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 99% confidence interval for the population mean μ.
What is the margin of error of μ? Interpret the results.

in a random sample of 24 people, the mean commute time to work
was 33.7 minutes and the standard deviation was 7.1 minuets .
assume the population is normally distributed and use a
t-distribution to construct a 99% confidence interval for the
population mean. what is the margin of error of the mean? interpret
the results.

In a random sample of 21 ?people, the mean commute time to work
was 31.5 minutes and the standard deviation was 7.2 minutes. Assume
the population is normally distributed and use a? t-distribution to
construct a 80?% confidence interval for the population mean ?.
What is the margin of error of ???
Interpret the results.

In a random sample of 20 people, the mean commute time to work
was 32.6 minutes and the standard deviation was 7.3 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 80% confidence interval for the population mean mu.
What is the margin of error of u? Interpret the results.
The confidence interval for the population mean u is?
What is the margin of error?

In a random sample of 29 people, the mean commute time to work
was 30.1 minutes and the standard deviation was 7.2 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 80% confidence interval for the population mean μ?
What is the margin of error of μ? Interpret the results.

In a random sample of 18 people, the mean commute time to work
was 33.1 minutes and the standard deviation was 7.2 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 98% confidence interval for the population mean mu .
What is the margin of error of mu? Interpret the results.
The confidence interval for the population mean mu is:
The margin of error of mu is:

In a random sample of 22 people, the mean commute time to work
was 32.1 minutes and the standard deviation was 7.3 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 99% confidence interval for the population mean μ.
What is the margin of error of μ? Interpret the results.

In a random sample of 18 people, the mean commute time to work
was 32.4 minutes and the standard deviation was 7.2 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 99% confidence interval for the population mean mu.
What is the margin of error of mu? Interpret the results.

In a random sample of 25 people, the mean commute time to work
was 30.6 minutes and the standard deviation was 7.2 minutes.
Assume the population is normally distributed and use a
t-distribution to construct a 95% confidence interval for the
population mean μ.
What is the margin of error of μ? Interpret the results.
1. The confidence interval for the population mean μ is
(_,_)
2. The margin of error of μ is __
3. Interpret the results.
A.It...

In a random sample of 27 people, the mean commute time to work
was 33.3 minutes and the standard deviation was 7.3 minutes. Assume
the population is normally distributed and use a t-distribution to
construct a 80% confidence interval for the population mean mu.
What is the margin of error of mu? Interpret the results.
The confidence interval for the population mean μ
(Round to one decimal place as needed.)
The margin of error of μ
Round to one decimal...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 19 minutes ago

asked 25 minutes ago

asked 36 minutes ago

asked 50 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago