Question

In a random sample of 25 ​people, the mean commute time to work was 30.6 minutes...

In a random sample of 25 ​people, the mean commute time to work was 30.6 minutes and the standard deviation was 7.2 minutes.

Assume the population is normally distributed and use a​ t-distribution to construct a 95​% confidence interval for the population mean μ.

What is the margin of error of μ​? Interpret the results.

1. The confidence interval for the population mean μ is (_,_)

2. The margin of error of μ is __

3. Interpret the results.

A.It can be said that 99​% of people have a commute time between the bounds of the confidence interval.

B.With 99​% ​confidence, it can be said that the commute time is between the bounds of the confidence interval.

C.With 99​% ​confidence, it can be said that the population mean commute time is between the bounds of the confidence interval.Your answer is correct.

D.If a large sample of people are taken approximately 99​% of them will have commute times between the bounds of the confidence interval.

Homework Answers

Answer #1

95​% confidence interval

The confidence interval for mean is obtained using the formula,

From the data values,

The t critical value is obtained from t distribution table for significance level = 0.10 and degree of freedom = n -1 = 25 - 1 = 24.

Margin of error

The margin of error of error for the mean is,

Interpretation:

Correct Answer:C.With 99​% ​confidence, it can be said that the population mean commute time is between the bounds of the confidence interval.

Explanation: For 99% confidence interval, the 99% of the time true population mean will lie in this range

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a random sample of 27 ​people, the mean commute time to work was 33.3 minutes...
In a random sample of 27 ​people, the mean commute time to work was 33.3 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results. The confidence interval for the population mean μ (Round to one decimal place as​ needed.) The margin of error of μ ​Round to one decimal...
In a random sample of 25 ​people, the mean commute time to work was 33.2 minutes...
In a random sample of 25 ​people, the mean commute time to work was 33.2 minutes and the standard deviation was 7.1 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 95​% confidence interval for the population mean muμ. What is the margin of error of muμ​? Interpret the results. The confidence interval for the population mean muμ is (____,_______ ) ​(Round to one decimal place as​ needed.) The margin of error of muμ is...
In a random sample of 29 ​people, the mean commute time to work was 30.1 minutes...
In a random sample of 29 ​people, the mean commute time to work was 30.1 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80​% confidence interval for the population mean μ? What is the margin of error of μ​? Interpret the results.
In a random sample of 18 ​people, the mean commute time to work was 32.4 minutes...
In a random sample of 18 ​people, the mean commute time to work was 32.4 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results.
In a random sample of 22 ​people, the mean commute time to work was 32.1 minutes...
In a random sample of 22 ​people, the mean commute time to work was 32.1 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
In a random sample of 28 ​people, the mean commute time to work was 33.6 minutes...
In a random sample of 28 ​people, the mean commute time to work was 33.6 minutes and the standard deviation was 7.1 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
In a random sample of 18 ​people, the mean commute time to work was 33.1 minutes...
In a random sample of 18 ​people, the mean commute time to work was 33.1 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean mu . What is the margin of error of mu? Interpret the results. The confidence interval for the population mean mu is: The margin of error of mu is:
In a random sample of 21 ?people, the mean commute time to work was 31.5 minutes...
In a random sample of 21 ?people, the mean commute time to work was 31.5 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a? t-distribution to construct a 80?% confidence interval for the population mean ?. What is the margin of error of ??? Interpret the results.
In a random sample of 21 ​people, the mean commute time to work was 31.3 minutes...
In a random sample of 21 ​people, the mean commute time to work was 31.3 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results. The confidence interval for the population mean mu is left parenthesis nothing comma nothing right parenthesis . ​(Round to one decimal place as​ needed.) The...
in a random sample of 24 people, the mean commute time to work was 33.7 minutes...
in a random sample of 24 people, the mean commute time to work was 33.7 minutes and the standard deviation was 7.1 minuets . assume the population is normally distributed and use a t-distribution to construct a 99% confidence interval for the population mean. what is the margin of error of the mean? interpret the results.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT