Question

the equation of mass connected to a spring is given by w^2=k/m and d^2x/d^2t = -w^2...

the equation of mass connected to a spring is given by w^2=k/m and d^2x/d^2t = -w^2 x
m= 0.2 kg k=5
x(0)=-0.05
x(0.628)=0.05
with step 0.157

by using FORWARD finite difference method solve this ODE

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A massless spring of spring constant k = 4872 N/m is connected to a mass m...
A massless spring of spring constant k = 4872 N/m is connected to a mass m = 210 kg at rest on a horizontal, frictionless surface. Part (a) The mass is displaced from equilibrium by A = 0.73 m along the spring’s axis. How much potential energy, in joules, is stored in the spring as a result? Part (b) When the mass is released from rest at the displacement A= 0.73 m, how much time, in seconds, is required for...
A 0.5 kg mass is connected to a spring with a spring constant of 20 N/m....
A 0.5 kg mass is connected to a spring with a spring constant of 20 N/m. The system undergoes SHM with an amplitude of 0.05 m. a)What is the mechanical energy of the system? b)What is ?? c) What is the maximum speed possible? d)What is the speed when ? = 0.02 ?? e)What is the speed when ? = 0.06 ??
1. Calculate the spring constant ,k, for a spring, if the spring stretches by 0.2 m...
1. Calculate the spring constant ,k, for a spring, if the spring stretches by 0.2 m as a result of an applied force of 200N. 2. A 20 kg mass is attached to a spring with spring constant, K=100 N/m. The spring/mass system is stretched by 5cm, and then released from rest and allowed to oscillate back and forth A.) What is the amplitude of vibration in this system? B.) Calculate the acceleration of the mass at X=0. 3. In...
A block of mass 2.5 kg is connected to a spring with k=1250 N/m. (a) At...
A block of mass 2.5 kg is connected to a spring with k=1250 N/m. (a) At t = 0 the block is released from rest at x(t = 0) = 28 mm from equilibrium. The motion is linearly damped with b = 50 kg/s. Find the amplitude A and phase angle ?. (Note that the amplitude is not obviously the displacement at t = 0 as it would be for the undamped case!) (b) Now consider a driving force with...
A mass m starts at rest at point A with the spring (spring constant k) compressed...
A mass m starts at rest at point A with the spring (spring constant k) compressed by a distance x. Mass m strikes and sticks to the mass M, and they slide together across a rough surface that provides a friction force f. Find out how far they slide from the original position of M before stopping. Provide the strategy analysis of this problem but do not solve the problem! Identify which physical principles need to apply to obtain a...
An oscillator of mass 2 Kg has a damping constant of 12 kg/sec and a spring...
An oscillator of mass 2 Kg has a damping constant of 12 kg/sec and a spring constant of 10N/m. What is its complementary position solution? If it is subject to a forcing function of F(t)= 2*sin(2t) what is the equation for the position with respect to time? Equation 2(x2) + 12(x1) + 10(x) = 2*sin(2t); x2 is the 2nd derivative of x; x1 is the 1st derivative of x.
Consider an undamped spring with spring constant k = 9N/m and with a mass attached with...
Consider an undamped spring with spring constant k = 9N/m and with a mass attached with mass 4kg. We apply a driving force of F(t) = sin(3t/2). Solve the IVP for the position of the mass x(t) with the string initially at rest at the equilibrium (so x(0) = 0 and ˙x(0) = 0). (Hint: Guess a particular solution of the form Ct cos(3t/2) and find the constant C.)
The mass m = 5.5 kg resting on a frictionless horizontal table is connected to a...
The mass m = 5.5 kg resting on a frictionless horizontal table is connected to a horizontal spring with stiffness constant k = 200 N/m . The mass is pulled a distance to the right so that the spring is stretched a distance x0 = 1.9 m initially, and then the mass is released from rest. B: Determine the kinetic energy when x=1/2 x0 C: Determine the maximum kinetic energy. D: Determine the maximum speed. E: At what position it...
A 2 kg mass is connected to a wall through a spring with force constant of...
A 2 kg mass is connected to a wall through a spring with force constant of 8 N/m. Using the Laplace transform method, calculate the time-dependent position of the mass, x(t) for t > 0, for the following cases: The mass is initially at rest, and then is hit at time zero with an impact described by f(t) = delta function. The mass is initially at rest, and then is hit at time t = 1 s with an impact...
Spring system, mass and dampers with k = 4000 N / m, m = 10 kg...
Spring system, mass and dampers with k = 4000 N / m, m = 10 kg and c = 40 Ns / m get a harmonic excitation force F (t) = 200 sin 16t N with initial conditions x0 = 0.05 m and a. Response x due to initial conditions (free vibration) b. Response x due to excitation force (forced vibration) c. The magnitude of the total xtot response (in m or mm) at t = 2.5 seconds