Question

A 0.5 kg mass is connected to a spring with a spring constant of 20 N/m....

A 0.5 kg mass is connected to a spring with a spring constant of 20 N/m. The system undergoes SHM with an amplitude of 0.05 m. a)What is the mechanical energy of the system?
b)What is ??

c) What is the maximum speed possible?

d)What is the speed when ? = 0.02 ??

e)What is the speed when ? = 0.06 ??

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force constant of k = 8 N/m. You may neglect the mass of the spring. The system undergoes simple harmonic motion with an amplitude of 5 cm. Calculate the following: 1. The period T of the motion 2. The maximum speed Vmax 3. The speed of the object when it is at x = 3.5 cm from the equilibrium position. 4. The total energy E...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. (i) What is the total mechanical energy of the system? (ii) What is the speed of the mass when the displacement is 1.00 cm? (iii) What is the potential energy when the displacement is 3.00 cm? (iv) What is the kinetic energy when the displacement is 3.00 cm?
A metal body with a mass 4.50 kg is connected to a spring with a force...
A metal body with a mass 4.50 kg is connected to a spring with a force constant of 475 N/m, and it oscillates horizontally with an amplitude of 2.20 cm. (a) What is the total mechanical energy (in J) of the body–spring system? J (b) What is the maximum speed (in m/s) of the oscillating body? m/s (c) What is the maximum magnitude of acceleration (in m/s2) of the oscillating body
(15 pts) A 0.50 kg object connected to a spring with a spring constant of 350...
(15 pts) A 0.50 kg object connected to a spring with a spring constant of 350 N/m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. a) What is the angular frequency of the oscillation? b) What is the maximum speed of the object? c) At what position does this maximum speed occur? d) What is the acceleration of the object at x = 2.00 cm? e) What is the total energy of the mass-spring system?
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic...
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic motion, what are the frequency, angular frequency, and period of the motion? The frequency, f = The angular frequency, ω = The period, T =   If the total mechanical energy of the system is 72 J, what are the amplitude, maximum speed and maximum acceleration of the motion? The amplitude, A =   The maximum speed, vmax = The maximum acceleration, amax =
Part A A block of unknown mass is attached to a spring with a spring constant...
Part A A block of unknown mass is attached to a spring with a spring constant of 5.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 28.0 cm/s. (a) Calculate the mass of the block. ________kg (b) Calculate the period of the motion. ________s (c) Calculate the maximum acceleration of the block. ________m/s2 Part B A block-spring...
A 0.25 kg mass is attached to the end of a spring connected horizontally to a...
A 0.25 kg mass is attached to the end of a spring connected horizontally to a wall. The mass is displaced 8.5 cm, then released, and it undergoes SHM. The spring constant is 1.4 x 10^2 N/m. Assume the amplitude of oscillation remains constant. a.) How far does the mass move in the first five cycles? b.) Compare the phase after 2.5 cycles with the initial phase. c.) What is the period of oscillation of the mass-spring system?
A horizontal spring-mass system has low friction, spring stiffness 200 N/m, and mass 0.5 kg. The...
A horizontal spring-mass system has low friction, spring stiffness 200 N/m, and mass 0.5 kg. The system is released with an initial compression of the spring of 9 cm and an initial speed of the mass of 3 m/s. (a) What is the maximum stretch during the motion? _ m (b) What is the maximum speed during the motion?   _m/s (c) Now suppose that there is energy dissipation of 0.02 J per cycle of the spring-mass system. What is the...