Question

A massless spring of spring constant k = 4872 N/m is connected to a mass m...

A massless spring of spring constant k = 4872 N/m is connected to a mass m = 210 kg at rest on a horizontal, frictionless surface.

Part (a) The mass is displaced from equilibrium by A = 0.73 m along the spring’s axis. How much potential energy, in joules, is stored in the spring as a result?

Part (b) When the mass is released from rest at the displacement A= 0.73 m, how much time, in seconds, is required for it to reach its maximum kinetic energy for the first time?

Part (c) The typical amount of energy released when burning one barrel of crude oil is called the barrel of oil equivalent (BOE) and is equal to 1 BOE = 6.1178362 GJ. Calculate the number, N, of springs with spring constant k = 4872 N/m displaced to A = 0.73 m you would need to store 1 BOE of potential energy.

Part (d) Imagine that the N springs from part (c) are released from rest simultaneously. If the potential energy stored in the springs is fully converted to kinetic energy and thereby “released” when the attached masses pass through equilibrium, what would be the average rate at which the energy is released? That is, what would be the average power, in watts, released by the N­spring system?

Part (e) Though not a practical system for energy storage, how many million buildings, B, each using 105 W, could the spring system temporarily power?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 2: (a) In this exercise a massless spring with a spring constant k = 6...
Problem 2: (a) In this exercise a massless spring with a spring constant k = 6 N/m is stretched from its equilibrium position with a mass m attached on the end. The distance the spring is stretched is x = 0.3 m. What is the force exerted by the spring on the mass? (5 points) (b) If we were to stretch the spring-mass system as in part (a) and hold it there, there will be some initial potential energy associated...
1. A 0.12kg body is connected to a wall by a spring with a spring constant...
1. A 0.12kg body is connected to a wall by a spring with a spring constant of 570 N/m. The body experiences simple oscillatory motion when pulled from its equilibrium rightward by 0.080m and then released from rest. what is the displacement of the block after 0.20s. 2. An object connected to a spring (with a spring constant of 29.8 N/m) is displaced 0.232 meter from equilibrium on a frictionless horizontal tabletop; upon release, the object experiences simple harmonic motion...
A spring of spring constant k=8.250 N is displaced from equilibrium by a distance of 0.1500...
A spring of spring constant k=8.250 N is displaced from equilibrium by a distance of 0.1500 m.  (a) What is the stored energy in the form of spring potential energy?  (b) What was the work done in stretching the spring from its equilibrium position to a displacement of 0.1500 m?  (c) If the spring is stretched from the displacement of 0.1500 m to a displacement of 0.3500 m, what is the change in spring potential energy between those two positions?
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m....
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m. This object reaches a maximum position of 12 cm from equilibrium. a) Determine the angular frequency of this mass. Then, determine the b) force, c) acceleration, d) elastic potential energy, e) kinetic energy, and f) velocity that it experiences at its maximum position. Determine the g) force, h) acceleration, i) elastic potential energy, j) kinetic energy, and k) velocity that it experiences at the...
A horizontal spring attached to a wall has a force constant of k = 820 N/m....
A horizontal spring attached to a wall has a force constant of k = 820 N/m. A block of mass m = 1.20 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below (a) The block is pulled to a position xi = 5.40 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.40 cm from equilibrium. (b) Find the speed of the block...
A horizontal spring attached to a wall has a force constant of k = 720 N/m....
A horizontal spring attached to a wall has a force constant of k = 720 N/m. A block of mass m = 1.90 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 6.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.20 cm from equilibrium. (b) Find the speed of the block...
A spring mass harmonic oscillator consists of a 0.2kg mass sphere connected vertically with a spring...
A spring mass harmonic oscillator consists of a 0.2kg mass sphere connected vertically with a spring of negligible mass and force constant of 6kN / m. The spring is released from rest 3cm from the equilibrium position. Calculate: (a) The energy of the spring, (b) The potential energy a when the compression of the spring is 1/3 of the amplitude, (c) Kinetic energy at this time.
A 50.0 gram mass connected to a spring with a spring constant of 35 N m...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. (i) What is the total mechanical energy of the system? (ii) What is the speed of the mass when the displacement is 1.00 cm? (iii) What is the potential energy when the displacement is 3.00 cm? (iv) What is the kinetic energy when the displacement is 3.00 cm?
6) A mass of 3 kg is attached to a massless spring with a force constant...
6) A mass of 3 kg is attached to a massless spring with a force constant 500 N/m. The mass rests on a horizontal frictionless surface. The system is compressed a distance of 30 cm from the springs initial position and then released. The momentum of the mass when the spring passes its equilibrium position is? 8660.25m/s Is this right
Two ideal springs with spring constant k and relaxed length L are attached to two rigid...
Two ideal springs with spring constant k and relaxed length L are attached to two rigid walls, as shown in Figure 1. The two walls are a total distance D = 3L            apart from one another. The springs are then attached to a ball that has mass m and negligible width, and the ball is then displaced from equilibrium, as shown in Figure 2. The location of the ball is given by the x-coordinate, as measured rightward from the left-most...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT