Question

A mass m starts at rest at point A with the spring (spring constant k) compressed...

A mass m starts at rest at point A with the spring (spring constant k) compressed by a distance x. Mass m strikes and sticks to the mass M, and they slide together across a rough surface that provides a friction force f. Find out how far they slide from the original position of M before stopping.

Provide the strategy analysis of this problem but do not solve the problem! Identify which physical principles need to apply to obtain a correct solution to each part of this multi-step problem. For each of these steps, describe the important details for that physical process. You can provide a bullet list or write paragraphs. You can use equations in your explanation, but do not solve them!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 0.25 kg is against a spring compressed at 0.20 m with spring...
A block of mass 0.25 kg is against a spring compressed at 0.20 m with spring constant 50 N/m. When the spring is released, the block moves along the frictionless surface until entering a region with the coefficient of kinetic friction equal to 0.30 (when the block enters the friction region it is no longer in contact with the spring ). How far,L,into the region with friction does the block slide before stopping?
A spring with a spring constant of 5000 N/m is compressed 25 cm by a mass...
A spring with a spring constant of 5000 N/m is compressed 25 cm by a mass of 2 kg. The mass is released and the spring propels the mass across the floor. After the mass leaves the spring it experiences drag on the floor. The kinetic coefficient of friction between the mass and the floor 0.25.   What is the maximum speed of the cart? How far does the cart slide before it come to a stop?
07.1 A 2.00kg mass is initially at rest on the end of a spring that is...
07.1 A 2.00kg mass is initially at rest on the end of a spring that is compressed by 40.0cm from its equilibrium position. The spring has spring constant 800 N/m. This mass is released and the mass shoots away from the spring on a frictionless, horizontal surface. It then hits a 3.00kg mass, and the two masses stick together and slide up a rough-surface hill (with friction) on the other side to a vertical height of 30.0cm. (a) What was...
A horizontal spring with spring constant 150 N/m is compressed 17 cm and used to launch...
A horizontal spring with spring constant 150 N/m is compressed 17 cm and used to launch a 2.9 kg box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units.
Box 1 of mass 2 kg is pressed against a spring with spring constant 600 N/m...
Box 1 of mass 2 kg is pressed against a spring with spring constant 600 N/m that is initially compressed by 0.5 m. The spring launches box 1 which then slides along a frictionless surface until it collides with box 2 (initially at rest) with mass 3 kg. They stick together, slide over a patch of sticky spilled soda with coefficient of kinetic friction 0.6 and length 1.2 m. Then, they fall off a cliff of height 3 m. How...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp that makes an angle of 36.2 ^\circ ∘ below the horizontal. After it slides without friction down the entire 2.89 m length of the ramp, it begins to slide horizontally along a rough concrete surface with a coefficient of kinetic friction of \mu_kμ k = 0.503 until it slows to a complete stop. How far does the block slide horizontally along the concrete before...
A block of mass m=12 kg is released from rest on an incline with a coefficient...
A block of mass m=12 kg is released from rest on an incline with a coefficient of kinetic friction 0.25, and at an angle θ=30◦ . Below the block is a spring that can be compressed 2.5 cm by a force of 280 N. The block momentarily stops when it compresses the spring by 5.5 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of...
A block of mass m attached to a spring with spring constant k oscillates horizontally on...
A block of mass m attached to a spring with spring constant k oscillates horizontally on a friction less table. Its velocity is 20 cm/s when x = -5 cm. Taking m = 100 gm, and spring constant = 2.5 N/m, a) Find out the equations of position, velocity, and acceleration of the ball. Find also the total energy of the block when its velocity was 20 cm/s. b) Oscillating particles generate waves. What will be the equation of a...
A spring of negligble mass has force constant k = 1600 N/m. a) How far must...
A spring of negligble mass has force constant k = 1600 N/m. a) How far must the spring be compressed for 3.2 J of potential energy to be stored in it? b) You place the spring vetically with one end on the floor. You then drop a 1.2 kg book onto it from a height of 0.80 m above the top of the spring. Find the maximum distance the spring will be compressed. I looked at the textbook solution for...
A 0.5-kg mass is attached to a spring with spring constant 2.5 N/m. The spring experiences...
A 0.5-kg mass is attached to a spring with spring constant 2.5 N/m. The spring experiences friction, which acts as a force opposite and proportional to the velocity, with magnitude 2 N for every m/s of velocity. The spring is stretched 1 meter and then released. (a) Find a formula for the position of the mass as a function of time. (b) How much time does it take the mass to complete one oscillation (to pass the equilibrium point, bounce...