Question

The mass m = 5.5 kg resting on a frictionless horizontal table is connected to a...

The mass m = 5.5 kg resting on a frictionless horizontal table is connected to a horizontal spring with stiffness constant k = 200 N/m . The mass is pulled a distance to the right so that the spring is stretched a distance x0 = 1.9 m initially, and then the mass is released from rest.

B: Determine the kinetic energy when x=1/2 x0

C: Determine the maximum kinetic energy.

D: Determine the maximum speed.

E: At what position it occurs?

F: Determine the maximum acceleration.

G: At what position it occurs?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 30.0 kg block at rest on a horizontal frictionless air track is connected to the...
A 30.0 kg block at rest on a horizontal frictionless air track is connected to the wall via a spring. The equilibrium position of the mass is defined to be at x=0. Somebody pushes the mass to the position x= 0.350 m, then lets go. The mass undergoes simple harmonic motion with a period of 4.70 s. What is the position of the mass 3.713 s after the mass is released? Consider the same mass and spring discussed in the...
A mass of 2.9 kg is connected to a horizontal spring whose stiffness is 9 N/m....
A mass of 2.9 kg is connected to a horizontal spring whose stiffness is 9 N/m. When the spring is relaxed, x = 0. The spring is stretched so that the initial value of x = +0.14 m. The mass is released from rest at time t = 0. Remember that when the argument of a trigonometric function is in radians, on a calculator you have to switch the calculator to radians or convert the radians to degrees. Predict the...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 28.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. a.)Find the force constant of the spring. b.)Find the frequency of the oscillations. c.)Find the maximum speed of...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
Consider an object of mass m is resting atop a frictionless table and connected to a...
Consider an object of mass m is resting atop a frictionless table and connected to a spring of stiness k. It is displaced some distance Ao and let go. 1. Write expressions for the associated kinetic and potential energies as functions of time. Make a sketch showing both over some meaningful time interval. 2.Write expressions for the associated kinetic and potential energies as functions of space. Make a sketch showing both over some meaningful spatial interval. 3. Determine the spatial...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to a vertical wall by a spring of force constant 205 N/mN/m as shown in the figure. When the spring is in its equilibrium position (neither stretched nor compressed), the block just touches a second lighter block of mass 3.4 kg at rest on the frictionless floor. The spring is now compressed by 0.12 mm (only the heavier mass is moved towards the wall) and...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is stretched 0.0566 m and released. It completes 12 oscillations in 4.62 s. Calculate: a) the oscillation frequency, b) the oscillation period, c) the spring force constant, d) the total mechanical energy of the oscillating spring, e) the maximum speed of the oscillating spring.
A horizontal block spring oscillator of mass 15 kg on a frictionless table and spring constant...
A horizontal block spring oscillator of mass 15 kg on a frictionless table and spring constant k is pulled 3 m to the right and released; after 0.1 seconds the block just passes the equilibrium position. a) Find at t= 1 second the angular frequency, frequency, period, position, velocity, acceleration, and force on the block. b) Draw the velocity function of the block over two periods.