Question

1.2 kg piece of ice at 0 oC is thrown into a very large lake at...

1.2 kg piece of ice at 0 oC is thrown into a very large lake at 12 oC. Water: Lf = 334 kJ/kg c = 4.19 kJ/(kg Co)

A) What is the entropy change of the ice? deltaS = ???J/K

B) What is the total entropy change of the ice and lake system? deltaS = ???J/K

I NEED NUMBERS PLEASE

Homework Answers

Answer #1

Entropy change for ice:

entropy is changed in two phases in water -> 1. in melting at constant temperatue + 2 . in changing temperature from 0 to 12 C.

in melting Change in entropy = mLf/TMP = 1.2 x 334 /273 KJ/K = 1.4681 KJ/K

in increasing temp, Change in entropy  = mC ln(T2/T1) = 1.2 x 4.19 ln((12+273)/273) = 0.21629 KJ/K

so, change in entropy for ice = 1.4681 + 0.21629 = 1.68439 KJ/K

For lake: heat is removed at constant temperature of 12 C

change in entropy = Q/T

Q= -(mLf +mC(T2-T1)) = -1.2 x (334+4.19x12)= -461.36 KJ

Q is negative because heat is rejected

T = 12 C = 12+273 = 285 K

so, Change in entropy of lake water = Q/T = -1.6180 KJ/K

for ice & lake system:

change in entropy = Entropy change for ice+Change in entropy of lake water = (1.68439-1.6180) KJ/K = 66.36 J/K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A piece of ice at 0 0C is put in 2.00 Kg of water at 20...
A piece of ice at 0 0C is put in 2.00 Kg of water at 20 0C. The equilibrium temperature of the system becomes 5 0C. (Lf=333 kJ/Kg, cw=4186 J/Kg, TK=TC+273.15) a) Find the mass of ice? Kg b) Find the entropy change of ice? J/K c) Find the entropy change of water? J/K d) Find the total entropy change of sysem? J/K
P-7: A piece of ice at 0 0C is put in 2.00 Kg of water at...
P-7: A piece of ice at 0 0C is put in 2.00 Kg of water at 20 0C. The equilibrium temperature of the system becomes 5 0C. (Lf=333 kJ/Kg, cw=4186 J/Kg, TK=TC+273.15) a) Find the mass of ice? Kg b) Find the entropy change of ice? J/K c) Find the entropy change of water? J/K d) Find the total entropy change of sysem? J/K
A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature...
A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature is 14.0 degrees C. Calculate the change in entropy (in joules/Kelvin) of the system as the ice cube comes to thermal equilibrium with the lake. (c for water = 4186 J/kg-K)
A very large block of ice, initially at temperature T = 0 oC is placed in...
A very large block of ice, initially at temperature T = 0 oC is placed in a sealed insulated container full of Helium gas, initially at temperature 325 oC and pressure of 3.1 atm. The volume of the Helium is 920 L, and is constant. Helium is a monatomic ideal gas. What is the mass of the liquid water when the system comes to equilibrium? (In other words, how much ice melts?) Assume no heat is lost to the surroundings....
A 50 kg copper block initially at 350 oC is quenched in a closed, rigid insulated...
A 50 kg copper block initially at 350 oC is quenched in a closed, rigid insulated tank containing 120 L of liquid water at 25 oC. Specific heat of copper, Cc = 385 J/(kgK), specific heat of liquid water, Cw = 4180J/(kgK). (i) Calculate the entropy change (kJ/K) of copper block. (ii) Determine the entropy change (kJ/K) of liquid water.
A small piece of ice (mass = 0.10 kg) at an initial temperature of 0oC is...
A small piece of ice (mass = 0.10 kg) at an initial temperature of 0oC is placed within glass of water, where the water's mass is 0.40 kg and it is at an initial temperature of 30oC.   (a) What is the final temperature of the system when thermal equilibrium is achieved assuming no heat leaks? (b) What is the entropy change of just the ice only while it melts? The latent heat of fusion and specific heats of ice and...
An ice chest initially contains 3.08 kg of ice at 0°C. (a) Find the change in...
An ice chest initially contains 3.08 kg of ice at 0°C. (a) Find the change in the entropy of the system of the ice chest and its contents just after the ice has melted. -----------------J/K (b) Find the change in the entropy of the surroundings, assuming the air outside the ice chest is at 27°C. ---------------J/K (c) Find the total entropy change of the universe as a result of this process. ----------------J/K (d) Find the ratio Ωf/Ωi for the system....
Heating a cubic of ice at - 6.6 °C, the mass of the ice is 465...
Heating a cubic of ice at - 6.6 °C, the mass of the ice is 465 g, what is the entropy change ΔS as the ice melt completely at 0°C? State your answer to nearest 1 J/K, take the absolute zero to be -273 °C, specific heat capacity of ice to be 2.1 kJ/kgK and the heat of fusion of the ice to be 334 kJ/kg.
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice...
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice at 0◦C is added. The system comes to an equilibrium temperature of 20◦C. The heat capacity for water is 4190 J and the heat of fusion for ice is kg·K kJ LF =334kg. (a) Determine the amount of ice that was added to the water. (b) What is the change in the entropy associated with the ice melting? (c) What is the change in...
A 1.000 kg block of ice at 0 °C is dropped into 1.354 kg of water...
A 1.000 kg block of ice at 0 °C is dropped into 1.354 kg of water that is 45 °C. What mass of ice melts? Specific heat of ice = 2.092 J/(g*K) Water = 4.184 J/(g*K)   Steam = 1.841 J/(g*K) Enthalpy of fusion = 6.008 kJ/mol Enthalpy of vaporization = 40.67 kJ/mol