Question

A 50 kg copper block initially at 350 oC is quenched in a closed, rigid insulated...

A 50 kg copper block initially at 350 oC is quenched in a closed, rigid insulated tank containing 120 L of liquid water at 25 oC. Specific heat of copper, Cc = 385 J/(kgK), specific heat of liquid water, Cw = 4180J/(kgK). (i) Calculate the entropy change (kJ/K) of copper block. (ii) Determine the entropy change (kJ/K) of liquid water.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.05 kg block of copper at 100°C is placed in an insulated calorimeter of negligible...
A 1.05 kg block of copper at 100°C is placed in an insulated calorimeter of negligible heat capacity containing 3.50 L of liquid water at 0.0°C. (a) Find the entropy change of the copper block. J/K (b) Find the entropy change of the water. J/K (c) Find the entropy change of the universe. J/K
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of...
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of water at 100 kPa and half of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized (state 2). Determine (a) the initial specific volume in m3/kg, (b) the final specific entropy in kJ/kg.K and (c) change of entropy in kJ/K.
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of...
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of water at 100 kPa and half of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized (state 2). Determine (a) the initial specific volume in m3/kg, (b) the final specific entropy in kJ/kg.K and (c) change of entropy in kJ/K.
A cooper block having a mass of 10 kg and at a temperature of 800 K...
A cooper block having a mass of 10 kg and at a temperature of 800 K is placed in a well-insulated vessel containing 100 kg of water initially at 290 K. Calculate: a) Calculate the entropy change for the block, the water, and the total process. b) What is the maximum amount of work that could have been obtained from the copper block and water in a Carnot engine? The heat capacities are 4.185 kJ/kg/K for water and 0.398 kJ/kg/K...
Please Show all work, thank you! A copper block with a mass of 400 grams is...
Please Show all work, thank you! A copper block with a mass of 400 grams is cooled to 77 K by being immersed in liquid nitrogen. The block is then placed in a Styrofoam cup containing some water that is initially at +50.0°C. Assume no heat is transferred to the cup or the surroundings. The specific heat of liquid water is 4186 J/(kg °C), of solid water is 2060 J/(kg °C), and of copper is 385 J/(kg °C). The latent...
A closed, rigid steel tank contains 1 lbm of water, initially at 260 F and a...
A closed, rigid steel tank contains 1 lbm of water, initially at 260 F and a quality of 60%. The tank is fitted with a paddle wheel and the water is stirred until the temperature is 350 F. The tank is well insulated on the outside and the steel is in thermal equilibrium with the water. The mass of the steel tank itself (not including water) is 60 lbm and the specific heat of the tank is 0.115 Btu/lbm·R. Changes...
Water of mass 2 kg in a closed, rigid tank is initially in the form of...
Water of mass 2 kg in a closed, rigid tank is initially in the form of a twophase liquid-vapor mixture. The initial temperature is 50° C. The mixture is heated until the tank contains only saturated vapor at 110° C. (i) Find the initial pressure, in kPa. (ii) Find the work for the process, in kJ. (iii) Find the heat transfer for the process, in kJ.
A closed, rigid steel tank contains 1 lbm of water, initially at 260F and a quality...
A closed, rigid steel tank contains 1 lbm of water, initially at 260F and a quality of 60%. The tank is fitted with a paddle wheel and the water is stirred until the temperature is 350F. The tank is well insulated on the outside and the steel is in thermal equilibrium with the water. The mass of the steel tank itself (not including water) is 60 lbm and the specific heat of the tank is 0.115 Btu/lbm·R. Changes in kinetic...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is connected by a valve to a large supply line carrying air at 295 K, 15 bar. The valve is opened only as long as required to fill the tank with air to a pressure of 15 bar. Finally, the air in the tank is at 310 K. The copper tank, which has a mass of 20 kg, is at the same temperature as the...
C. An expeiment was conducted on block of copper material.In this experiment a copper block of...
C. An expeiment was conducted on block of copper material.In this experiment a copper block of 800 grams of mass with a heat capacity of 0.15 kJ/K at 98 oC is dipped in river at 9 oC.In the second step the same copper black at 98 oC dropped into the river from a height of 120 m.After the two process both the copper blocks at 98oC and 0oC both are combined together.Calculate the total entropy change for the each of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT