Question

A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature...

A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature is 14.0 degrees C. Calculate the change in entropy (in joules/Kelvin) of the system as the ice cube comes to thermal equilibrium with the lake. (c for water = 4186 J/kg-K)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 80 g ice cube at -53°C is placed in a lake whose temperature is 44°C....
A 80 g ice cube at -53°C is placed in a lake whose temperature is 44°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
A 49 g ice cube at -69°C is placed in a lake whose temperature is 32°C....
A 49 g ice cube at -69°C is placed in a lake whose temperature is 32°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
A 49 g ice cube at -37°C is placed in a lake whose temperature is 77°C....
A 49 g ice cube at -37°C is placed in a lake whose temperature is 77°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
I place an ice cube with a mass of 0.223 kg and a temperature of −35°C...
I place an ice cube with a mass of 0.223 kg and a temperature of −35°C is placed into an insulated aluminum container with a mass of 0.553 kg containing 0.452 kg of water. The water and the container are initially in thermal equilibrium at a temperature of 27°C. Assuming that no heat enters or leaves the system, what will the final temperature of the system be when it reaches equilibrium, and how much ice will be in the container...
A 400 g ice cube at -20 ?C is placed in an aluminum cup whose initial...
A 400 g ice cube at -20 ?C is placed in an aluminum cup whose initial temperature is 80 ?C . The system comes to an equilibrium temperature of 20 ?C . What is the mass of the cup? Express your answer with the appropriate units.
A 102 g piece of ice at 0.0°C is placed in an insulated calorimeter of negligible...
A 102 g piece of ice at 0.0°C is placed in an insulated calorimeter of negligible heat capacity containing 100 g of water at 100°C. Find the entropy change of the universe for this process? 135 J/K 134 J/K is wrong,
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3...
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3 of water at 24˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg. and A 6.0 g ice cube at -21˚C is put into a Thermos...
A cube of ice is taken from the freezer at -6.5 ?C and placed in a...
A cube of ice is taken from the freezer at -6.5 ?C and placed in a 85-g aluminum calorimeter filled with 300 g of water at room temperature of 20.0 ?C. The final situation is observed to be all water at 17.0 ?C. The specific heat of ice is 2100 J/kg?C?, the specific heat of aluminum is 900 J/kg?C?, the specific heat of water is is 4186 J/kg?C?, the heat of fusion of water is 333 kJ/Kg. a)What was the...
A cube of ice is taken from the freezer at -5.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -5.5 ∘C and placed in a 85-g aluminum calorimeter filled with 300 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 16.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. What was the...
A 35.0-g cube of ice, initially at 0.0°C, is dropped into 180.0 g of water in...
A 35.0-g cube of ice, initially at 0.0°C, is dropped into 180.0 g of water in an 70.0-g aluminum container, both initially at 35.0°C. What is the final equilibrium temperature? (Specific heat for aluminum is 900 J/kg⋅°C, the specific heat of water is 4 186 J/kg⋅°C, and Lf = 3.33 × 105 J/kg.) 26.4 °C 17.6 °C 8.79 °C 35.1 °C 30.8 ° C