Question

We have a vector space V = {p ⊆ Pn (ℝ) : p(α) = 0}, where...

We have a vector space V = {p ⊆ Pn (ℝ) : p(α) = 0}, where n > 1 and α ⊆ ℝ.

1) Determine the basis for V

2) Extend the basis of V to a basis for Pn (ℝ).

Thanks alot in advance.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose we have a vector space V of dimension n. Let R be a linearly independent...
Suppose we have a vector space V of dimension n. Let R be a linearly independent set with order n−2. Let S be a spanning set with order n+ 2. Outline a strategy to extend R to a basis for V. Outline a strategy to pare down S to a basis for V .
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2,...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2, and ?S is the subset of ?2P2 consisting of all polynomials of the form ?(?)=?2+?.p(x)=x2+c. B. ?=?5(?)V=C5(I), and ?S is the subset of ?V consisting of those functions satisfying the differential equation ?(5)=0.y(5)=0. C. ?V is the vector space of all real-valued functions defined on the interval [?,?][a,b], and ?S is the subset of ?V consisting of those functions satisfying ?(?)=?(?).f(a)=f(b). D. ?=?3(?)V=C3(I), and...
Determine if the given set V is a subspace of the vector space W, where a)...
Determine if the given set V is a subspace of the vector space W, where a) V={polynomials of degree at most n with p(0)=0} and W= {polynomials of degree at most n} b) V={all diagonal n x n matrices with real entries} and W=all n x n matrices with real entries *Can you please show each step and little bit of an explanation on how you got the answer, struggling to learn this concept?*
Let V be a vector space of dimension n > 0, show that (a) Any set...
Let V be a vector space of dimension n > 0, show that (a) Any set of n linearly independent vectors in V forms a basis. (b) Any set of n vectors that span V forms a basis.
Let B be a (finite) basis for a vector space V. Suppose that v is a...
Let B be a (finite) basis for a vector space V. Suppose that v is a vector in V but not in B. Prove that, if we enlarge B by adding v to it, we get a set that cannot possibly be a basis for V. (We have not yet formally defined dimension, so don't use that idea in your proof.)
If V is a vector space of polynomials of degree n with real numbers as coefficients,...
If V is a vector space of polynomials of degree n with real numbers as coefficients, over R, and W is generated by the polynomials (x 3 + 2x 2 − 2x + 1, x3 + 3x 2 − x + 4, 2x 3 + x 2 − 7x − 7), then is W a subspace of V , and if so, determine its basis.
Let V be a vector space and w a fixed element of V. We define, in...
Let V be a vector space and w a fixed element of V. We define, in terms of w, a function Tw as follows: Tw(v) = v + w. Prove that Twis a linear transformation if and only if w = 0.
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
Suppose V and W are two vector spaces. We can make the set V × W...
Suppose V and W are two vector spaces. We can make the set V × W = {(α, β)|α ∈ V,β ∈ W} into a vector space as follows: (α1,β1)+(α2,β2)=(α1 + α2,β1 + β2) c(α1,β1)=(cα1, cβ1) You can assume the axioms of a vector space hold for V × W (A) If V and W are finite dimensional, what is the dimension of V × W? Prove your answer. Now suppose W1 and W2 are two subspaces of V ....
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any...
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any non-zero λ1,…,λn∈R, λ1v1,…,λnvn is also a basis of V. (b) Let ui=v1+⋯+vi, 1≤i≤n. Show that u1,…,un is a basis of V.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT