Question

If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...

If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent.

Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing
more than n vectors in V is linearly dependent."

Prove without using the above theorem.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V....
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V. Then so are {v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}
Determine if the vector v is a linear combination of the vectors u1, u2, u3. If...
Determine if the vector v is a linear combination of the vectors u1, u2, u3. If yes, indicate at least one possible value for the weights. If not, explain why. v = 2 4 2 , u1 = 1 1 0 , u2 = 0 1 -1 , u3 = 1 2 -1
5. Let U1, U2, U3 be subspaces of a vector space V. Prove that U1, U2,...
5. Let U1, U2, U3 be subspaces of a vector space V. Prove that U1, U2, U3 are direct-summable if and only if (i) the intersection of U1 and U2 is 0.\, and (ii) the intersection of U1+U2 and U3 is 0. A detailed explanation would be greatly appreciated :)
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that...
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that every vector w∈V can expressed in multiple ways as a linear combination of these generators.  
Question 6 Suppose u and v are vectors in 3–space where u = (u1, u2, u3)...
Question 6 Suppose u and v are vectors in 3–space where u = (u1, u2, u3) and v = (v1, v2, v3). Evaluate u × v × u and v × u × u.
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set,...
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set, and suppose {w⃗1,w⃗2,w⃗3} ⊂ X is a linearly dependent set. Define V = span{⃗v1,⃗v2,⃗v3} and W = span{w⃗1,w⃗2,w⃗3}. (a) Is there a linear transformation P : V → W such that P(⃗vi) = w⃗i for i = 1, 2, 3? (b) Is there a linear transformation Q : W → V such that Q(w⃗i) = ⃗vi for i = 1, 2, 3? Hint: the...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V , and if ⃗v4 ∈ V , then {⃗v1, ⃗v2, ⃗v3, ⃗v4} is also a linear dependent set of vectors in V . 2. Prove that if {⃗v1,⃗v2,...,⃗vr} is a linear dependent set of vectors in V, and if⃗ vr + 1 ,⃗vr+2,...,⃗vn ∈V, then {⃗v1,⃗v2,...,⃗vn} is also a linear dependent set of vectors in V.
Suppose u = (u1,u2) and v = (v1, v2) are two vectors in R2. Explain why...
Suppose u = (u1,u2) and v = (v1, v2) are two vectors in R2. Explain why the operations (u * v) = u1v2 cannot be an inner product.
(i) Let u= (u1,u2) and v= (v1,v2). Show that the following is an inner product by...
(i) Let u= (u1,u2) and v= (v1,v2). Show that the following is an inner product by verifying that the inner product hold <u,v>= 4u1v1 + u2v2 +4u2v2 (ii) Let u= (u1, u2, u3) and v= (v1,v2,v3). Show that the following is an inner product by verifying that the inner product hold <u,v> = 2u1v1 + u2v2 + 4u3v3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT