Question

Let V = Pn(R), the vector space of all polynomials of degree at most n. And let T : V → V be a linear transformation. Prove that there exists a non-zero linear transformation S : V → V such that T ◦ S = 0 (that is, T(S(v)) = 0 for all v ∈ V) if and only if there exists a non-zero vector v ∈ V such that T(v) = 0.

Hint: For the backwards direction, consider building a basis for V that contains v (be sure to explain why you can always do this).

Answer #1

Suppose V is a vector space over F, dim V = n, let T be a linear
transformation on V.
1. If T has an irreducible characterisctic polynomial over F,
prove that {0} and V are the only T-invariant subspaces of V.
2. If the characteristic polynomial of T = g(t) h(t) for some
polynomials g(t) and h(t) of degree < n , prove that V has a
T-invariant subspace W such that 0 < dim W < n

Prove that the set V of all polynomials of degree ≤ n including
the zero polynomial is vector space over the field R under usual
polynomial addition and scalar multiplication. Further, find the
basis for the space of polynomial p(x) of degree ≤ 3. Find a basis
for the subspace with p(1) = 0.

5.
Let S be the set of all polynomials p(x) of degree ≤ 4 such
that
p(-1)=0.
(a) Prove that S is a subspace of the vector space of all
polynomials.
(b) Find a basis for S.
(c) What is the dimension of S?
6.
Let ? ⊆ R! be the span of ?1 = (2,1,0,-1), ?2
=(1,2,-6,1),
?3 = (1,0,2,-1) and ? ⊆ R! be the span of ?1 =(1,1,-2,0), ?2
=(3,1,2,-2). Prove that V=W.

If V is a vector space of polynomials of degree n with real
numbers as coefficients, over R, and W is generated by
the polynomials (x 3 + 2x 2 − 2x + 1, x3 + 3x 2 − x + 4, 2x 3 +
x 2 − 7x − 7),
then is W a subspace of V , and if so, determine its basis.

Let T be a 1-1 linear transformation from a vector space V to a
vector space W. If the vectors u,
v and w are linearly independent
in V, prove that T(u), T(v),
T(w) are linearly independent in W

(3) Let V be a finite dimensional vector space, and let T: V® V
be a linear transformation such that rk(T) = rk(T2).
a) Show that ker(T) = ker(T2).
b) Show that 0 is the only vector that lies in
both the null space of T, and the range space of T

† Let β={v1,v2,…,vn} be a basis for a vector space V
and T:V→V be a linear transformation. Prove that [T]β is upper
triangular if and only if T(vj)∈span({v1,v2,…,vj}) j=1,2,…,n. Visit
goo.gl/k9ZrQb for a solution.

Let V be a finite-dimensional vector space and let T be a linear
map in L(V, V ). Suppose that dim(range(T 2 )) = dim(range(T)).
Prove that the range and null space of T have only the zero vector
in common

Let P be the vector space of all polynomials in x with real
coefficients. Does P have a basis? Prove your answer.

Let V be a vector space: d) Suppose that V is
finite-dimensional, and let S be a set of inner products on V that
is (when viewed as a subset of B(V)) linearly independent. Prove
that S must be finite
e) Exhibit an infinite linearly independent set of inner
products on R(x), the vector space of all polynomials with real
coefficients.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 11 minutes ago

asked 22 minutes ago

asked 22 minutes ago

asked 26 minutes ago

asked 42 minutes ago

asked 46 minutes ago

asked 56 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago