Question

Suppose we have a vector space V of dimension n. Let R be a linearly independent...

Suppose we have a vector space V of dimension n. Let R be a linearly independent set with order n−2. Let S be a spanning set with order n+ 2. Outline a strategy to extend R to a basis for V. Outline a strategy to pare down S to a basis for V .

Homework Answers

Answer #1

R is a linearly independent set with order n-2 and S is a spanning set with order n+2. To extend R to a basis for V, we will try to express the vectors in S as linear combinations of the vectors in R. The vectors in S which cannot be expressed as linear combinations of the vectors in R may be added to R to create a a linearly independent set with order > n-2. If we are able to locate 2 such vectors then the order of the larger set created this way will be n. This set will form a basis for V.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V be a vector space of dimension n > 0, show that (a) Any set...
Let V be a vector space of dimension n > 0, show that (a) Any set of n linearly independent vectors in V forms a basis. (b) Any set of n vectors that span V forms a basis.
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be...
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be a set of inner products on V that is (when viewed as a subset of B(V)) linearly independent. Prove that S must be finite e) Exhibit an infinite linearly independent set of inner products on R(x), the vector space of all polynomials with real coefficients.
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
Let B be a (finite) basis for a vector space V. Suppose that v is a...
Let B be a (finite) basis for a vector space V. Suppose that v is a vector in V but not in B. Prove that, if we enlarge B by adding v to it, we get a set that cannot possibly be a basis for V. (We have not yet formally defined dimension, so don't use that idea in your proof.)
Let S={(0,1),(1,1),(3,-2)} ⊂ R², where R² is a real vector space with the usual vector addition...
Let S={(0,1),(1,1),(3,-2)} ⊂ R², where R² is a real vector space with the usual vector addition and scalar multiplication. (i) Show that S is a spanning set for R²​​​​​​​ (ii)Determine whether or not S is a linearly independent set
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set...
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set S′={3u−w,v+w,−2w}S′={3u−w,v+w,−2w} is also a linearly independent set in V.
Let V be a vector space with dimV = n. Show that : Any spanning set...
Let V be a vector space with dimV = n. Show that : Any spanning set for V consisting of exactly n vectors is a basis for V.
Let V be an n-dimensional vector space and W a vector space that is isomorphic to...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" the Definiton of isomorphic:  Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" The Definition of dimenion: the...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
Let V = R and F = Q (V is a F-vector space). Is the subset...
Let V = R and F = Q (V is a F-vector space). Is the subset S1 = {1, √ 2, √ 3} (of V ) linearly independent? Answer the same question for S2 = {1, √3 2, √3 4}.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT