Question

Determine if the given set V is a subspace of the vector space W, where a)...

Determine if the given set V is a subspace of the vector space W, where

a) V={polynomials of degree at most n with p(0)=0} and W= {polynomials of degree at most n}

b) V={all diagonal n x n matrices with real entries} and W=all n x n matrices with real entries

*Can you please show each step and little bit of an explanation on how you got the answer, struggling to learn this concept?*

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2,...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2, and ?S is the subset of ?2P2 consisting of all polynomials of the form ?(?)=?2+?.p(x)=x2+c. B. ?=?5(?)V=C5(I), and ?S is the subset of ?V consisting of those functions satisfying the differential equation ?(5)=0.y(5)=0. C. ?V is the vector space of all real-valued functions defined on the interval [?,?][a,b], and ?S is the subset of ?V consisting of those functions satisfying ?(?)=?(?).f(a)=f(b). D. ?=?3(?)V=C3(I), and...
Prove that the singleton set {0} is a vector subspace of the space P4(R) of all...
Prove that the singleton set {0} is a vector subspace of the space P4(R) of all polynomials of degree at most 3 with real coefficients.
If V is a vector space of polynomials of degree n with real numbers as coefficients,...
If V is a vector space of polynomials of degree n with real numbers as coefficients, over R, and W is generated by the polynomials (x 3 + 2x 2 − 2x + 1, x3 + 3x 2 − x + 4, 2x 3 + x 2 − 7x − 7), then is W a subspace of V , and if so, determine its basis.
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Verify this axiom of a vector space. Vector space: A subspace of R2: the set of...
Verify this axiom of a vector space. Vector space: A subspace of R2: the set of all dimension-2 vectors [x; y] whose entries x and y are odd integers. Axiom 1: The sum u + v is in V.
We have learned that we can consider spaces of matrices, polynomials or functions as vector spaces....
We have learned that we can consider spaces of matrices, polynomials or functions as vector spaces. For the following examples, use the definition of subspace to determine whether the set in question is a subspace or not (for the given vector space), and why. 1. The set M1 of 2×2 matrices with real entries such that all entries of their diagonal are equal. That is, all 2 × 2 matrices of the form: A = a b c a 2....
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n
Let P2 denote the vector space of polynomials in x with real coefficients having degree at...
Let P2 denote the vector space of polynomials in x with real coefficients having degree at most 2. Let W be a subspace of P2 given by the span of {x2−x+6,−x2+2x−1,x+5}. Show that W is a proper subspace of P2.
Let V be an n-dimensional vector space and W a vector space that is isomorphic to...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" the Definiton of isomorphic:  Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" The Definition of dimenion: the...
A vector space V and a subset S are given. Determine if S is a subspace...
A vector space V and a subset S are given. Determine if S is a subspace of V by determining which conditions of the definition of a subspace are satisfied. (Select all that apply.) V = C[−4, 4] and S = P. S contains the zero vector. S is closed under vector addition. S is closed under scalar multiplication. None of these