Question

Ed’s utility from vacations (V) and meals (M) is given by the function U(V, M) =...

Ed’s utility from vacations (V) and meals (M) is given by the function U(V, M) = V^2M. Last year the price of vacations was $200 and the price of meals was $50. The price of meals rose to $75 this year and the price of vacations remained the same. In both years, Ed had an income of $1500. Calculate the CV and EV from the price change in meals.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ed?s utility from vacations (V) and meals (M) is given by the function U(V,M) = V2M....
Ed?s utility from vacations (V) and meals (M) is given by the function U(V,M) = V2M. Last year, the price of vacations was $200 and the price of meals was $50. This year, the price of meals rose to $75, the price of vacations remained the same. Both years, Ed had an income of $1500. a. Calculate the change in consumer surplus from meals resulting from the change in meal prices. b. What is the compensating variation for the price...
Q: Mike consumes only two goods: x and y. His Utility function is given by U(x,y)...
Q: Mike consumes only two goods: x and y. His Utility function is given by U(x,y) = 2x+2y Mike has an income of $200. The price of good y is $2. Suppose the price of good x changes from $1 to $2. 1. Find the compensating variation and explain your answer. Show the CV in a diagram. 2. Find the equivalent variation and explain your answer. Show the EV in a diagram.
Given that John’s utility function is U(c,m) = c0.5 + m0.5, what is his expenditure function?...
Given that John’s utility function is U(c,m) = c0.5 + m0.5, what is his expenditure function? Let the price of good c be pc and the price of good m be pm. Suppose Kip is trying to achieve a level of utility indicated by ¯ U. step by step
Suppose Rajesh has a utility function resulting in an MRS = Y / X (from U...
Suppose Rajesh has a utility function resulting in an MRS = Y / X (from U = √XY) and he has an income of $240 (i.e. M = 240). Suppose he faces prices PX = 8 and PY = 10. If the price of good Y goes down to PY = 8, while everything else remains the same, find Rajesh’s compensating variation (CV). The answer is CV = -25.34, please show your work
Suppose Bernadette has a utility function resulting in an MRS = Y / X (from U...
Suppose Bernadette has a utility function resulting in an MRS = Y / X (from U = √XY) and she has an income of $80 (i.e. M = 80). Suppose she faces the following prices, PX = 6 and PY = 5. If the price of good Y goes up to PY = 6, while everything else remains the same, find Bernadette’s equivalent variation (EV). The answer is EV = - 6.97, please show your work.
3. Suppose that Karen’s utility function is given by U = 2A + 5B. a. Calculate...
3. Suppose that Karen’s utility function is given by U = 2A + 5B. a. Calculate Karen’s marginal utility of good A and her marginal utility of good B. b. Suppose that the prices of the goods PA and PB are such that Karen is (optimally) consuming positive quantities of both goods. What is the price of good A in terms of the price of good B? c. How will her consumption change if PA doubles, while PB does not...
Suppose the indirect utility functions is: v(p1, p2, m) = ( ln(m /p2) , if p1...
Suppose the indirect utility functions is: v(p1, p2, m) = ( ln(m /p2) , if p1 ≥ m. (m−p1)/ p1 + ln(p1/ p2 ), if p1 < m. a) Compute the Marshallian demand for both goods x1 and x2 for the different values of m. b) Based on your answers from (a), can you guess the type of the original utility function u(x) (Hint: It is one of the 5 common utility functions we have taken in the course)? Explain...
Suppose the indirect utility functions is: v(p1, p2, m) = ln (m /p2) , if p1...
Suppose the indirect utility functions is: v(p1, p2, m) = ln (m /p2) , if p1 ≥ m.( m−p1)/ p1 + ln (p1/ p2) , if p1 < m. a) Compute the Marshallian demand for both goods x1 and x2 for the different values of m. b) Based on your answers from (a), can you guess the type of the original utility function u(x) (Hint: It is one of the 5 common utility functions we have taken in the course)?...
Larry’s utility is a function of nuts (X) and berries (Y), given by U = 20ln...
Larry’s utility is a function of nuts (X) and berries (Y), given by U = 20ln X + 4Y . a. Derive equations for Larry’s demand functions for X and Y, assuming an interior optimum. b. If the price of berries (PY) gets too high, Larry will stop consuming them altogether. That price is his reservation price for berries. Derive a formula for Larry’s reservation price for berries as a function of the price of nuts and his income (PX...
Sam's is interested in two goods, X and Y. His indirect utility function is U* =...
Sam's is interested in two goods, X and Y. His indirect utility function is U* = M px-.6 py-4.    ( same as U* = M /(px.6 py0.4 ) ) where M is Sam's income, and px   and py denote respectively the price of good X and the price of good Y.   Sam's market demand functions are X*=0.6M/px and Y* = 0.4M/py . Find the absolute value of the change in Sam's consumers surplus if the price of good X...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT