Question

Ed?s utility from vacations (V) and meals (M) is given by the function U(V,M) = V2M....

Ed?s utility from vacations (V) and meals (M) is given by the function U(V,M) = V2M. Last year, the price of vacations was $200 and the price of meals was $50. This year, the price of meals rose to $75, the price of vacations remained the same. Both years, Ed had an income of $1500. a. Calculate the change in consumer surplus from meals resulting from the change in meal prices. b. What is the compensating variation for the price change in meals? c. Calculate the equivalent variation for the price change in meals. SHOW YOUR WORK PLEASE

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ed’s utility from vacations (V) and meals (M) is given by the function U(V, M) =...
Ed’s utility from vacations (V) and meals (M) is given by the function U(V, M) = V^2M. Last year the price of vacations was $200 and the price of meals was $50. The price of meals rose to $75 this year and the price of vacations remained the same. In both years, Ed had an income of $1500. Calculate the CV and EV from the price change in meals.
1. Suppose that a consumer has a utility function U(x1, x2) = x 0.5 1 x...
1. Suppose that a consumer has a utility function U(x1, x2) = x 0.5 1 x 0.5 2 . Initial prices are p1 = 1 and p2 = 1, and income is m = 100. Now, the price of good 1 increases to 2. (a) On the graph, please show initial choice (in black), new choice (in blue), compensating variation (in green) and equivalent variation (in red). (b) What is amount of the compensating variation? How to interpret it? (c)...
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially...
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially the consumer faces prices (1, 2) and has income 10. If the prices change to (4, 2), calculate the compensating and equivalent variations. [Hint: find their initial optimal consumption of the two goods, and then after the price increase. Then show this graphically.] please do step by step and show the graph
Suppose Rajesh has a utility function resulting in an MRS = Y / X (from U...
Suppose Rajesh has a utility function resulting in an MRS = Y / X (from U = √XY) and he has an income of $240 (i.e. M = 240). Suppose he faces prices PX = 8 and PY = 10. If the price of good Y goes down to PY = 8, while everything else remains the same, find Rajesh’s compensating variation (CV). The answer is CV = -25.34, please show your work
Assume that we have following utility maximization problem with quasilinear utility function: U=2√ x + Y...
Assume that we have following utility maximization problem with quasilinear utility function: U=2√ x + Y s.t. pxX+pyY=I (a)derive Marshallian demand and show if x is a normal good, or inferior good, or neither (b)assume that px=0.5, py=1, and I =10. Then the price x declined to 0.2. Use Hicksian demand function and expenditure function to calculate compensating variation. (c)use hicksian demand function and expenditure function to calculate equivalent variation (e) briefly explain why compensating variation and equivalent variation are...
Q: Mike consumes only two goods: x and y. His Utility function is given by U(x,y)...
Q: Mike consumes only two goods: x and y. His Utility function is given by U(x,y) = 2x+2y Mike has an income of $200. The price of good y is $2. Suppose the price of good x changes from $1 to $2. 1. Find the compensating variation and explain your answer. Show the CV in a diagram. 2. Find the equivalent variation and explain your answer. Show the EV in a diagram.
Suppose Bernadette has a utility function resulting in an MRS = Y / X (from U...
Suppose Bernadette has a utility function resulting in an MRS = Y / X (from U = √XY) and she has an income of $80 (i.e. M = 80). Suppose she faces the following prices, PX = 6 and PY = 5. If the price of good Y goes up to PY = 6, while everything else remains the same, find Bernadette’s equivalent variation (EV). The answer is EV = - 6.97, please show your work.
2. For Each of the following situations, i) Write the Indirect Utility Function ii) Write the...
2. For Each of the following situations, i) Write the Indirect Utility Function ii) Write the Expenditure Function iii) Calculate the Compensating Variation iv) Calculate the Equivalent Variation a) U(X,Y) = X^1/2 x Y^1/2. M = $288. Initially, PX= 16 and PY = 1. Then the Price of X changes to PX= 9. i) Indirect Utility Function: __________________________ ii) Expenditure Function: ____________________________ iii) CV = ________________ iv) EV = ________________ b) U(X,Y) = MIN (X, 3Y). M = $40. Initially,...
Suppose a consumer’s utility function is given byU(X, Y) =X^1/2 Y^1/2. Also, the consumer has $30...
Suppose a consumer’s utility function is given byU(X, Y) =X^1/2 Y^1/2. Also, the consumer has $30 to spend. The price of X,PX= $3, and the price of Y,PY= $5. a) (4 points) How much X and Y should the consumer purchase in order to maximize their utility? b) (4 points) How much utility does the consumer receive? c) (4 points) Now suppose PX increases to$6. What is the new bundle of X and Y that the consumer will demand? How...
3. Suppose that Karen’s utility function is given by U = 2A + 5B. a. Calculate...
3. Suppose that Karen’s utility function is given by U = 2A + 5B. a. Calculate Karen’s marginal utility of good A and her marginal utility of good B. b. Suppose that the prices of the goods PA and PB are such that Karen is (optimally) consuming positive quantities of both goods. What is the price of good A in terms of the price of good B? c. How will her consumption change if PA doubles, while PB does not...