Question

Suppose Rajesh has a utility function resulting in an MRS = Y / X (from U...

Suppose Rajesh has a utility function resulting in an MRS = Y / X (from U = √XY) and he has an income of $240 (i.e. M = 240). Suppose he faces prices PX = 8 and PY = 10. If the price of good Y goes down to PY = 8, while everything else remains the same, find Rajesh’s compensating variation (CV).

The answer is CV = -25.34, please show your work

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose Bernadette has a utility function resulting in an MRS = Y / X (from U...
Suppose Bernadette has a utility function resulting in an MRS = Y / X (from U = √XY) and she has an income of $80 (i.e. M = 80). Suppose she faces the following prices, PX = 6 and PY = 5. If the price of good Y goes up to PY = 6, while everything else remains the same, find Bernadette’s equivalent variation (EV). The answer is EV = - 6.97, please show your work.
Suppose a consumer has the utility function u(x, y) = x + y. a) In a...
Suppose a consumer has the utility function u(x, y) = x + y. a) In a well-labeled diagram, illustrate the indifference curve which yields a utility level of 1. (b) If the consumer has income M and faces the prices px and py for x and y, respectively, derive the demand functions for the two goods. (c) What types of preferences are associated with such a utility function?
Suppose a consumer has the utility function U (x, y) = xy + x + y....
Suppose a consumer has the utility function U (x, y) = xy + x + y. Recall that for this function the marginal utilities are given by MUx(x,y) = y+1 and MUy(x,y) = x+1. (a) What is the marginal rate of substitution MRSxy? (b)If the prices for the goods are px =$2 and py =$4,and if the income of the consumer is M = $18, then what is the consumer’s optimal affordable bundle? (c) What if instead the prices are...
Ginger's utility function is U(x,y)=x2y with associated marginal utility functions MUx=2xy and MUy=x2. She has income...
Ginger's utility function is U(x,y)=x2y with associated marginal utility functions MUx=2xy and MUy=x2. She has income I=240 and faces prices Px= $8 and Py =$2. a. Determine Gingers optimal basket given these prices and her in. b. If the price of y increase to $8 and Ginger's income is unchanged what must the price of x fall to in order for her to be exactly as well as before the change in Py?
Suppose a consumer has the utility function u(x,y)=x+y - (a) In a well labelled diagram illustrate...
Suppose a consumer has the utility function u(x,y)=x+y - (a) In a well labelled diagram illustrate the indifference curve which yields a utility level of 1 (b) If the consumer has income And faces the prices Px and Py for x and y, respectively, derive the demand function for the two goods (c) What types of preferences are associated with such a utility function?
Tamer derives utility from goods X and Y, according to the following utility function: U(X,Y)= 3...
Tamer derives utility from goods X and Y, according to the following utility function: U(X,Y)= 3 X radical y . His budget is $90 per period, the price of X is PX=$2, and the price of Y is PY=$6. 1. Graph the indifference curve when U= 36 2. What is the Tamer’s MRS between goods X and Y at the bundle (X=8 and Y=2 )? What does the value of MRS means? (أحسب القيمة واكتب بالكلمات ماذا تعني القيمة) 3....
An agent has preferences for goods X and Y represented by the utility function U(X,Y) =...
An agent has preferences for goods X and Y represented by the utility function U(X,Y) = X +3Y the price of good X is Px= 20, the price of good Y is Py= 40, and her income isI = 400 Choose the quantities of X and Y which, for the given prices and income, maximize her utility.
Assume that we have following utility maximization problem with quasilinear utility function: U=2√ x + Y...
Assume that we have following utility maximization problem with quasilinear utility function: U=2√ x + Y s.t. pxX+pyY=I (a)derive Marshallian demand and show if x is a normal good, or inferior good, or neither (b)assume that px=0.5, py=1, and I =10. Then the price x declined to 0.2. Use Hicksian demand function and expenditure function to calculate compensating variation. (c)use hicksian demand function and expenditure function to calculate equivalent variation (e) briefly explain why compensating variation and equivalent variation are...
A consumer has utility function U(x, y) = x + 4y1/2 . What is the consumer’s...
A consumer has utility function U(x, y) = x + 4y1/2 . What is the consumer’s demand function for good x as a function of prices px and py, and of income m, assuming a corner solution? Group of answer choices a.x = (m – 3px)/px b.x = m/px – 4px/py c.x = m/px d.x = 0
Q: Mike consumes only two goods: x and y. His Utility function is given by U(x,y)...
Q: Mike consumes only two goods: x and y. His Utility function is given by U(x,y) = 2x+2y Mike has an income of $200. The price of good y is $2. Suppose the price of good x changes from $1 to $2. 1. Find the compensating variation and explain your answer. Show the CV in a diagram. 2. Find the equivalent variation and explain your answer. Show the EV in a diagram.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT