Question

Water flows in a rectangular concrete channel that is 10 m wide and has a slope...

Water flows in a rectangular concrete channel that is 10 m wide and has a slope of 0.005. The depth of the uniform flow in the channel (y1) is 450 mm and the discharge per width of the water is 2.2 m2/s. The downstream channel is smooth, and a hydraulic jump is forced to form in the channel by installing a sill. Calculate:

(i) the depth and velocity of the water downstream of the hydraulic jump;

(ii) the difference in depths or height of hydraulic jump

(iii) the head loss due to the jump

Homework Answers

Answer #1

Let's begin,

Hope this helps,

Please feel free to comment fr further any queries

All the best :)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rectangular concrete channel with n=0.013 is to be constructed on 0.5% slope: 1. Design for...
A rectangular concrete channel with n=0.013 is to be constructed on 0.5% slope: 1. Design for a flow rate of Q=18 m^3/s. 2. A 30 cm high, 5 m long broad crested weir is placed in the channel. Calculate the depth upstream y1 and downstream y2 from the weir then get the head loss due to the hydraulic jump
Water flows in a 4-m wide rectangular open channel that has an n = 0.022, a...
Water flows in a 4-m wide rectangular open channel that has an n = 0.022, a slope of 0.005 m/m, and the flow rate is 10 m3/s.   A flow depth of 0.92 m is located at a particular location in the channel. What type of flow profile occurs at that location? Given the roughness value, what is the likely channel material?    (Water surface profile classification problem) Hydraulic Engineering
A long rectangular concrete channel (b = 10 ft, n = 0.015) carries 400 cfs. There...
A long rectangular concrete channel (b = 10 ft, n = 0.015) carries 400 cfs. There is a grade break in the channel; the slope upstream of the grade break is 0.02 and the slope downstream of the grade break is 0.002. The following equations are valid for a rectangular channel: • DC = [(Q2)/(g*b2)]1/3 • y2 = 0.5*y1*[(1+8NFr12)1/2 -1] (for hydraulic jump) • NFr = v/(g*y)1/2 a) Use calculations to classify each section of the channel (steep, mild, horizontal,...
A hydraulic jump is formed in a trapezoidal channel of 2.0-m bed width, 1:1 side slope,...
A hydraulic jump is formed in a trapezoidal channel of 2.0-m bed width, 1:1 side slope, and carrying a discharge of 6.0 m3/s. The initial and final depths of the jump are 0.5m and 2.0m, respectively. Concrete blocks are placed to stabilize the jump. Cf = 0.6. Construct the M-y diagram for the channel section. Find the critical depth.
9. A sluice gate is placed across a wide rectangular channel. A hydraulic jump occurs downstream...
9. A sluice gate is placed across a wide rectangular channel. A hydraulic jump occurs downstream of the sluice gate. The specific discharge of flow in the channel is √30 (m2 /s). The flow depth downstream of the hydraulic jump is 2 m. The contraction coefficient of the sluice gate is 0.7. What is the sluice gate opening (w)? (g = 10 m/s2 ) a) 0.8 m b) 1 m c) 1.43 m d) 1.6 m e) None of above
A long rectangular concrete channel (b = 10 ft, n = 0.015) carries 400 cfs. There...
A long rectangular concrete channel (b = 10 ft, n = 0.015) carries 400 cfs. There is a grade break in the channel; the slope upstream of the grade break is 0.02 and the slope downstream of the grade break is 0.002. The following equations are valid for a rectangular channel: DC = [(Q2)/(g*b2)]1/3 y2 = 0.5*y1*[(1+8NFr12)1/2 -1] (for hydraulic jump) NFr = v/(g*y)1/2 a) Use calculations to classify each section of the channel (steep, mild, horizontal, adverse or critical)...
an water vertical sluis gate freely 56 m3/s into a rectangular channel 7 m wide ....
an water vertical sluis gate freely 56 m3/s into a rectangular channel 7 m wide . the gate whic is the same width as the channel is set at a height of 1.4m above the bed and the depth at the vena contracta is .85 m the energy loss in the converging flow at a sluis is quite small so take the head loss B as .05v2 / 2g the normal depth in the downstream hz=2.6m 1. calculate the depth...
A 10-m wide, rectangular, concrete-lined canal (n=0.013) has a bottom slope of 0.01 and a constant-level...
A 10-m wide, rectangular, concrete-lined canal (n=0.013) has a bottom slope of 0.01 and a constant-level lake at the upstream end. The steep canal carries a flow of is 250 m3/s and the critical and normal depths are 4m and 2.37m, respectively. The water level in the lake is 6.0 m above the bottom of the canal at the entrance. If the entrance losses are negligible, using Direct Step Method determine; i. The flow depth 812 m downstream of the...
A wide rectangular channel of width 20 m and has n = 0.035, determine the critical...
A wide rectangular channel of width 20 m and has n = 0.035, determine the critical bed slope and discharge for critical depths of 0.2, 0.5 and 1.0 m
6. An overflow spillway flows into a mild channel, producing a hydraulic jump. The channel is...
6. An overflow spillway flows into a mild channel, producing a hydraulic jump. The channel is rectangular, with Q = 100 ft3/s, bottom width b = 20 ft, and Manning's n = 0.015. The flow depth at the toe of the spillway is 0.4 ft and the approximate slope at the toe of the spillway is 0.1. The slope of the [mild] downstream channel, which functions as a stilling basin, is 0.0001. Calculate:  the critical depth,  the length...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT