Question

A rectangular concrete channel with n=0.013 is to be constructed on 0.5% slope: 1. Design for...

A rectangular concrete channel with n=0.013 is to be constructed on 0.5% slope:

1. Design for a flow rate of Q=18 m^3/s.

2. A 30 cm high, 5 m long broad crested weir is placed in the channel. Calculate the depth upstream y1 and downstream y2 from the weir then get the head loss due to the hydraulic jump

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Water flows in a rectangular concrete channel that is 10 m wide and has a slope...
Water flows in a rectangular concrete channel that is 10 m wide and has a slope of 0.005. The depth of the uniform flow in the channel (y1) is 450 mm and the discharge per width of the water is 2.2 m2/s. The downstream channel is smooth, and a hydraulic jump is forced to form in the channel by installing a sill. Calculate: (i) the depth and velocity of the water downstream of the hydraulic jump; (ii) the difference in...
A long rectangular concrete channel (b = 10 ft, n = 0.015) carries 400 cfs. There...
A long rectangular concrete channel (b = 10 ft, n = 0.015) carries 400 cfs. There is a grade break in the channel; the slope upstream of the grade break is 0.02 and the slope downstream of the grade break is 0.002. The following equations are valid for a rectangular channel: • DC = [(Q2)/(g*b2)]1/3 • y2 = 0.5*y1*[(1+8NFr12)1/2 -1] (for hydraulic jump) • NFr = v/(g*y)1/2 a) Use calculations to classify each section of the channel (steep, mild, horizontal,...
A long rectangular concrete channel (b = 10 ft, n = 0.015) carries 400 cfs. There...
A long rectangular concrete channel (b = 10 ft, n = 0.015) carries 400 cfs. There is a grade break in the channel; the slope upstream of the grade break is 0.02 and the slope downstream of the grade break is 0.002. The following equations are valid for a rectangular channel: DC = [(Q2)/(g*b2)]1/3 y2 = 0.5*y1*[(1+8NFr12)1/2 -1] (for hydraulic jump) NFr = v/(g*y)1/2 a) Use calculations to classify each section of the channel (steep, mild, horizontal, adverse or critical)...
Design a trapezoidal concrete lined channel (n = 0.013) to convey 3m3 /sec on a slope...
Design a trapezoidal concrete lined channel (n = 0.013) to convey 3m3 /sec on a slope of 0.0004. Assume the use of a best hydraulic section for the design. Express your answers to the nearest mm.
6. An overflow spillway flows into a mild channel, producing a hydraulic jump. The channel is...
6. An overflow spillway flows into a mild channel, producing a hydraulic jump. The channel is rectangular, with Q = 100 ft3/s, bottom width b = 20 ft, and Manning's n = 0.015. The flow depth at the toe of the spillway is 0.4 ft and the approximate slope at the toe of the spillway is 0.1. The slope of the [mild] downstream channel, which functions as a stilling basin, is 0.0001. Calculate:  the critical depth,  the length...
The 1.5 cm wide rectangular channel in the laboratory was used to create a hydraulic jump;...
The 1.5 cm wide rectangular channel in the laboratory was used to create a hydraulic jump; the following data were collected: y1 = 1.25 ± 0.05 cm; y2 = 5.6 ± 0.1 cm; Q = 8 liters/30 sec Assume the water temperature was 20°C. (Note the mixed units above – please present your solutions in si units) (a) Use the theoretical equation to predict the conjugate depth ratio, y2/y1, based on the initial depth, y1. Compare the value to the...
A 10-m wide, rectangular, concrete-lined canal (n=0.013) has a bottom slope of 0.01 and a constant-level...
A 10-m wide, rectangular, concrete-lined canal (n=0.013) has a bottom slope of 0.01 and a constant-level lake at the upstream end. The steep canal carries a flow of is 250 m3/s and the critical and normal depths are 4m and 2.37m, respectively. The water level in the lake is 6.0 m above the bottom of the canal at the entrance. If the entrance losses are negligible, using Direct Step Method determine; i. The flow depth 812 m downstream of the...
A hydraulic jump is formed in a trapezoidal channel of 2.0-m bed width, 1:1 side slope,...
A hydraulic jump is formed in a trapezoidal channel of 2.0-m bed width, 1:1 side slope, and carrying a discharge of 6.0 m3/s. The initial and final depths of the jump are 0.5m and 2.0m, respectively. Concrete blocks are placed to stabilize the jump. Cf = 0.6. Construct the M-y diagram for the channel section. Find the critical depth.
A concrete, trapezoidal channel with a 5-m bottom width and side slopes of 1:1 (H:V) discharges...
A concrete, trapezoidal channel with a 5-m bottom width and side slopes of 1:1 (H:V) discharges 35 m3/sec. The bottom slope of the channel is 0.004. A dam is placed across the channel and raises the water level to a depth of 3.4 m. determine the channel and flow classification (e.g., M-2, S-1) upstream of the dam and explain your supporting logic. then compute the water surface profile at 50-m intervals until you reach the hydraulic jump. Use a spreadsheet...
In a gradually varied flow in a rectangular channel for the given data: Q=10 m3/s, b=550...
In a gradually varied flow in a rectangular channel for the given data: Q=10 m3/s, b=550 cm, So=0.15%, n=0.038, y2=2.2 m, ΔL=100 m. Calculate y1 by using the standard step method. Calculate the upstream distance where uniform flow depth takes place by using direct step method.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT