Question

9. A sluice gate is placed across a wide rectangular channel. A hydraulic jump occurs downstream...

9. A sluice gate is placed across a wide rectangular channel. A hydraulic jump occurs downstream of the sluice gate. The specific discharge of flow in the channel is √30 (m2 /s). The flow depth downstream of the hydraulic jump is 2 m. The contraction coefficient of the sluice gate is 0.7. What is the sluice gate opening (w)? (g = 10 m/s2 )

a) 0.8 m

b) 1 m

c) 1.43 m

d) 1.6 m

e) None of above

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A vertical sluice gate in a long rectangular channel 5 m wide is lowered to produce...
A vertical sluice gate in a long rectangular channel 5 m wide is lowered to produce an opening of 1.0 m. Assuming that free flow conditions exist at the vena contracta downstream of the gate verify that the flow in the vena contracta is supercritical when the discharge is 15 m3/s, and determine the depth just upstream of the gate. Cv = 0.98; Cc = 0.6. Take the upstream velocity energy coefficient (Coriolis) to be 1.0 and that at the...
A vertical sluice gate in a long rectangular channel 5 m wide is lowered to produce...
A vertical sluice gate in a long rectangular channel 5 m wide is lowered to produce an opening of 1.0 m. Assuming that the free flow conditions exist at the vena contracta downstream of the gate verify that the flow in the vena contracta is supercritical when the discharge is 15 m3/s and determine the depth just upstream of the gate, Cv = 0.98; Cc = 0.6. Take the upstream velocity energy coefficient to be 1 and that at the...
Q2. Considering a vertical sluice gate in a horizontal smooth rectangular channel, the upstream and downstream...
Q2. Considering a vertical sluice gate in a horizontal smooth rectangular channel, the upstream and downstream water depths are 5.1 and 0.45 m, respectively. The upstream flow velocity is 0.5 m/s and the channel width is 27 m. Calculate the downstream flow velocity and the force acting on the sluice gate. Draw the control volume and show the forces acting on the sluice gate.
Water flows in a rectangular concrete channel that is 10 m wide and has a slope...
Water flows in a rectangular concrete channel that is 10 m wide and has a slope of 0.005. The depth of the uniform flow in the channel (y1) is 450 mm and the discharge per width of the water is 2.2 m2/s. The downstream channel is smooth, and a hydraulic jump is forced to form in the channel by installing a sill. Calculate: (i) the depth and velocity of the water downstream of the hydraulic jump; (ii) the difference in...
Q4. A hydraulic jump occurs fort the given flow conditions: discharge=20 m3/s, upstream channel geometry trapezoid...
Q4. A hydraulic jump occurs fort the given flow conditions: discharge=20 m3/s, upstream channel geometry trapezoid (upstream flow depth=100 cm, bottom width=100 cm, m=2), downstream channel geometry rectangular (width= 500 cm). Calculate downstream flow depth and power loss in the hydraulic jump.
an water vertical sluis gate freely 56 m3/s into a rectangular channel 7 m wide ....
an water vertical sluis gate freely 56 m3/s into a rectangular channel 7 m wide . the gate whic is the same width as the channel is set at a height of 1.4m above the bed and the depth at the vena contracta is .85 m the energy loss in the converging flow at a sluis is quite small so take the head loss B as .05v2 / 2g the normal depth in the downstream hz=2.6m 1. calculate the depth...
A sluice gate controls the flow in a horizontal channel of width 2 m. If the...
A sluice gate controls the flow in a horizontal channel of width 2 m. If the discharge is 1.5 m^3/s and the upstream water depth is d1 = 1.5 m. (Note: all answers with two decimal places). a. Calculate the downstream depth d2 (in m). b. Calculate the downstream velocity V2 (m/s).
Hydraulic jump occurs in a rectangular canal. The water depth just before and just after the...
Hydraulic jump occurs in a rectangular canal. The water depth just before and just after the jump are 0.6 m and 1.5m respectively. Calculate the critical depth and the flow rate per unit width
The 1.5 cm wide rectangular channel in the laboratory was used to create a hydraulic jump;...
The 1.5 cm wide rectangular channel in the laboratory was used to create a hydraulic jump; the following data were collected: y1 = 1.25 ± 0.05 cm; y2 = 5.6 ± 0.1 cm; Q = 8 liters/30 sec Assume the water temperature was 20°C. (Note the mixed units above – please present your solutions in si units) (a) Use the theoretical equation to predict the conjugate depth ratio, y2/y1, based on the initial depth, y1. Compare the value to the...
A 7-m-high spillway is placed across a rectangular channel as a means of measuring discharge. If...
A 7-m-high spillway is placed across a rectangular channel as a means of measuring discharge. If the actual head on the spillway crest is 0.92 m and the Francis C value is 3.32, a. What is the specific discharge in the channel? b. Ignoring losses across the spillway, what is the flow depth at the toe?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT