Question

Let E/F be a finite Galois extension such that Gal(E/F) is abelian. Prove that for every...

Let E/F be a finite Galois extension such that Gal(E/F) is abelian. Prove that for
every intermediate field K, the extension K/F is Galois.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let E/F be an algebraic extension. Let K and L be intermediate fields (i.e. F ⊆...
Let E/F be an algebraic extension. Let K and L be intermediate fields (i.e. F ⊆ K ⊆ E and F ⊆ L ⊆ E). (i) Prove that if the extension K/F is separable then the extension KL/L is separable. (ii) Prove that if the extension K/F is normal then the extension KL/L is normal. Note: To make things easier for you, you can assume that E/F is finite (hence all extensions are finite),
Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H =...
Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H = Gal(K/F). Since M/F is Galois, and K/F is a field extension, we have the composite extension field K M. Show that K M/F is a Galois extension
Let F⊆K⊆E be extension fields. If K is an algebraic extension of F and let α∈E...
Let F⊆K⊆E be extension fields. If K is an algebraic extension of F and let α∈E be algebraic over K. Show that α is also algebraic over F.
Let E/F be a field extension, and let α be an element of E that is...
Let E/F be a field extension, and let α be an element of E that is algebraic over F. Let p(x) = irr(α, F) and n = deg p(x). (a) For f(x) ∈ F[x], let r(x) (∈ F[x]) be the remainder of f(x) when divided by p(x). Prove that f(x) +p(x)= r(x)+p(x)in F[x]/p(x). (b) Prove that if |F| < ∞, then | F[x]/p(x)| = |F|n. (For a set A, we denote by |A| the number of elements in A.)
For an abelian group G, let tG = {x E G: x has finite order} denote...
For an abelian group G, let tG = {x E G: x has finite order} denote its torsion subgroup. Show that t defines a functor Ab -> Ab if one defines t(f) = f|tG (f restricted on tG) for every homomorphism f. If f is injective, then t(f) is injective. Give an example of a surjective homomorphism f for which t(f) is not surjective.
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.
Let A be a finite set and f a function from A to A. Prove That...
Let A be a finite set and f a function from A to A. Prove That f is one-to-one if and only if f is onto.
4) Let F be a finite field. Prove that there exists an integer n ≥ 1,...
4) Let F be a finite field. Prove that there exists an integer n ≥ 1, such that n.1F = 0F . Show further that the smallest positive integer with this property is a prime number.
Prove that if F is a field and K = FG for a finite group G...
Prove that if F is a field and K = FG for a finite group G of automorphisms of F, then there are only finitely many subfields between F and K. Please help!
Abstract Algebra (Modern Algebra) Prove that every subgroup of an abelian group is abelian.
Abstract Algebra (Modern Algebra) Prove that every subgroup of an abelian group is abelian.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT