Question

Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...

Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let φ:G ——H be a group homomorphism and K=ker(φ). Assume that xK=yK. Prove that φ(x)=φ(y)
Let φ:G ——H be a group homomorphism and K=ker(φ). Assume that xK=yK. Prove that φ(x)=φ(y)
Please explain it in detail. Let φ∶G → H be a homomorphism with H abelian. Show...
Please explain it in detail. Let φ∶G → H be a homomorphism with H abelian. Show that G/ ker φ must be abelian.
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then...
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then the set (φ)^{-1}[{φ(a)}] ={x∈G|φ(x)} =φ(a) is the left coset aH of H, and is also the right coset Ha of H. Consequently, the two partitions of G into left cosets and into right cosets of H are the same
Let G be an Abelian group and let H be a subgroup of G Define K...
Let G be an Abelian group and let H be a subgroup of G Define K = { g∈ G | g3 ∈ H }. Prove that K is a subgroup of G .
Let φ : A → B be a group homomorphism. Prove that ker φ is a...
Let φ : A → B be a group homomorphism. Prove that ker φ is a normal subgroup of A.
Letφ:G→G′is a group homomorphism. Prove that φ is one-to-one if and only if Ker(φ) ={e}.
Letφ:G→G′is a group homomorphism. Prove that φ is one-to-one if and only if Ker(φ) ={e}.
Let G be a group and define the center (of G) Z(G) = {a ∈ G...
Let G be a group and define the center (of G) Z(G) = {a ∈ G | xa = ax, ∀ x ∈ G} a. Prove that Z(G) forms a subgroup of G. b. If G is abelian, show that Z(G) = G. c. What is the center of S3
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
For an abelian group G, let tG = {x E G: x has finite order} denote...
For an abelian group G, let tG = {x E G: x has finite order} denote its torsion subgroup. Show that t defines a functor Ab -> Ab if one defines t(f) = f|tG (f restricted on tG) for every homomorphism f. If f is injective, then t(f) is injective. Give an example of a surjective homomorphism f for which t(f) is not surjective.
Let G be a group and let p be a prime number such that pg =...
Let G be a group and let p be a prime number such that pg = 0 for every element g ∈ G. a.      If G is commutative under multiplication, show that the mapping f : G → G f(x) = xp is a homomorphism b.     If G is an Abelian group under addition, show that the mapping f : G → G f(x) = xpis a homomorphism.