Question

Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H =...

Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H = Gal(K/F). Since M/F is Galois, and K/F is a field extension, we have the composite extension field K M.

Show that K M/F is a Galois extension

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H =...
Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H = Gal(K/F). Since M/F is Galois, and K/F is a field extension, we have the composite extension field K M Show that the image is {(τ, υ) ∈ G × H | τ |K∩M = υ|K∩M }
Let E/F be a finite Galois extension such that Gal(E/F) is abelian. Prove that for every...
Let E/F be a finite Galois extension such that Gal(E/F) is abelian. Prove that for every intermediate field K, the extension K/F is Galois.
Let H, K be two groups and G = H × K. Let H = {(h,...
Let H, K be two groups and G = H × K. Let H = {(h, e) | h ∈ H}, where e is the identity in K. Show that G/H is isomorphic to K.
Let f : G → H be a group isomorphism, and K ⊂ G be a...
Let f : G → H be a group isomorphism, and K ⊂ G be a subgroup. Show that f(K) ⊂ H is a subgroup.
f H and K are subgroups of a group G, let (H,K) be the subgroup of...
f H and K are subgroups of a group G, let (H,K) be the subgroup of G generated by the elements {hkh−1k−1∣h∈H, k∈K}. Show that : H◃G if and only if (H,G)<H
Let N and H be groups, and here for a homomorphism f: H --> Aut(N) =...
Let N and H be groups, and here for a homomorphism f: H --> Aut(N) = group automorphism, let N x_f H be the corresponding semi-direct product. Let g be in Aut(N), and  k  be in Aut(H),  Let C_g: Aut(N) --> Aut(N) be given by conjugation by g.  Now let  z :=  C_g * f * k: H --> Aut(N), where * means composition. Show that there is an isomorphism from Nx_f H to Nx_z H, which takes the natural...
Let E/F be an algebraic extension. Let K and L be intermediate fields (i.e. F ⊆...
Let E/F be an algebraic extension. Let K and L be intermediate fields (i.e. F ⊆ K ⊆ E and F ⊆ L ⊆ E). (i) Prove that if the extension K/F is separable then the extension KL/L is separable. (ii) Prove that if the extension K/F is normal then the extension KL/L is normal. Note: To make things easier for you, you can assume that E/F is finite (hence all extensions are finite),
Let G and H be groups, and let G0 = {(g, 1) : g ∈ G}...
Let G and H be groups, and let G0 = {(g, 1) : g ∈ G} . (a) Show that G0 ≅ G. (b) Show that G0 is a normal subgroup of G × H. (c) Show that (G × H)/G0 ≅ H.
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a...
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a subgroup of H and define f^-1(J) ={x is an element of G| f(x) is an element of J} a. Show ker(f)⊂f^-1(J) and ker(f) is a normal subgroup of f^-1(J) b. Let p: f^-1(J) --> J be defined by p(x) = f(x). Show p is a surjective homomorphism c. Show the set kef(f) and ker(p) are equal d. Show J is isomorphic to f^-1(J)/ker(f)
Let F⊆K⊆E be extension fields. If K is an algebraic extension of F and let α∈E...
Let F⊆K⊆E be extension fields. If K is an algebraic extension of F and let α∈E be algebraic over K. Show that α is also algebraic over F.