Question

4) Let F be a finite field. Prove that there exists an integer n ≥ 1,...

4) Let F be a finite field. Prove that there exists an integer n ≥ 1, such that n.1F = 0F . Show further that the smallest positive integer with this property is a prime number.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that for any positive integer n, a field F can have at most a finite...
Prove that for any positive integer n, a field F can have at most a finite number of elements of multiplicative order at most n.
Let n be a positive integer and let U be a finite subset of Mn×n(C) which...
Let n be a positive integer and let U be a finite subset of Mn×n(C) which is closed under multiplication of matrices. Show that there exists a matrix A in U satisfying tr(A) ∈ {1,...,n}
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is...
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is not a prime number, then n is divisible by an integer x with 1 < x ≤√n. [Note: An integer m is divisible by another integer n if there exists a third integer k such that m = nk. This is just a formal way of saying that m is divisible by n if m n is an integer.]
Prove that if E is a finite field with characteristic p, then the number of elements...
Prove that if E is a finite field with characteristic p, then the number of elements in E equals p^n, for some positive integer n.
Let f(n) be a negligible function and k a positive integer. Prove the following: (a) f(√n)...
Let f(n) be a negligible function and k a positive integer. Prove the following: (a) f(√n) is negligible. (b) f(n/k) is negligible. (c) f(n^(1/k)) is negligible.
Prove that for every positive integer n, there exists a multiple of n that has for...
Prove that for every positive integer n, there exists a multiple of n that has for its digits only 0s and 1s.
Prove that for every positive integer n, there exists an irreducible polynomial of degree n in...
Prove that for every positive integer n, there exists an irreducible polynomial of degree n in Q[x].
Prove that if for epsilon >0 there exists a positive integer n such that for all...
Prove that if for epsilon >0 there exists a positive integer n such that for all n>N we have p_n is an element of (x+(-epsilon),x+epsilon) then p_1,p_2, ... p_n converges to x.
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer...
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer k such that n < k + 3 ≤ n + 2 . (You can use that facts without proof that even plus even is even or/and even plus odd is odd.)
Let n be a positive integer and let S be a subset of n+1 elements of...
Let n be a positive integer and let S be a subset of n+1 elements of the set {1,2,3,...,2n}.Show that (a) There exist two elements of S that are relatively prime, and (b) There exist two elements of S, one of which divides the other.