Question

Calculate the expectation value of momentum for the second excited state of the harmonic oscillator. Show...

Calculate the expectation value of momentum for the second excited state of the harmonic oscillator. Show steps for both integral and bracket notation please.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the standard deviation of momentum for the second excited state of a harmonic oscillator.
Calculate the standard deviation of momentum for the second excited state of a harmonic oscillator.
For a particle in the first excited state of harmonic oscillator potential, a) Calculate 〈?〉1, 〈?〉1,...
For a particle in the first excited state of harmonic oscillator potential, a) Calculate 〈?〉1, 〈?〉1, 〈? 2〉1, 〈? 2〉1. b) Calculate (∆?)1 and (∆?)1. c) Check the uncertainty principle for this state. d) Estimate the length of the interval about x=0 which corresponds to the classically allowed domain for the first excited state of harmonic oscillator. e) Using the result of part (d), show that position uncertainty you get in part (b) is comparable to the classical range of...
Q. 2​(a) For the first excited state of harmonic oscillator, calculate <x>, <p>, <x2>, and <p2>...
Q. 2​(a) For the first excited state of harmonic oscillator, calculate <x>, <p>, <x2>, and <p2> explicitly by spatial integration. (b) Check that the uncertainty principle is obeyed. (c) Compute <T> and <V>. .
Consider the ground state of the harmonic oscillator. (a) (7 pts) Calculate the expectation values <x>,...
Consider the ground state of the harmonic oscillator. (a) (7 pts) Calculate the expectation values <x>, <x2>, <p> and <p2>. (b) (3 ps) What is the product ΔxΔp, where the two quantities are standard deviations? (This is easy if you did part (a)). How does this answer compare with the prediction of the Uncertainty Principle?
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin 1⁄2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work.
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin-1/2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin-1/2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work
a) For a 1D linear harmonic oscillator find the first order corrections to the ground state...
a) For a 1D linear harmonic oscillator find the first order corrections to the ground state due to the Gaussian perturbation. b) Find the first order corrections to the first excited state. Please show all work.
For the simple harmonic oscillator at first excited state the Hermite polynomial H1=x, (a)find the normalization...
For the simple harmonic oscillator at first excited state the Hermite polynomial H1=x, (a)find the normalization constant C1 (b) <x> (c) <x2>, (d) <V(x)> for this state.
(a) Write down explicitly the first and second harmonic-oscillator wave functions, including normalization constants (b) Show...
(a) Write down explicitly the first and second harmonic-oscillator wave functions, including normalization constants (b) Show that the second harmonic-oscillator wave function is normalized (c) Show that the two functions in part (a) are orthogonal