Question

A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...

A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin-1/2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work

Homework Answers

Answer #1

for Nth excited state energy of a 3-D simple harmonic oscillator,En= (nx+ny+nz+3/2)h(bar)

for ground state we consider nx=ny=nz=0

hence, E0=3/2h(bar)=3x1/2h(bar), which means it can accomodate 3 spin half electrons

next for 1st excited state, nx=1, ny=nz=0

hence E1=(1+3/2)h(bar)=5/2h(bar)=5x1/2h(bar), which means it can accomodate 5 spin half electrons

total=3+5=8 electrons.

so the ninth electron must go to the third excited state

now, E1=5/2h(bar)=3.3eV=3.3x1.6x10-19J

from this we find =2.011x1015rad/s

for 2nd excited state, nx=ny=1, nz=0

therefore, E2=(1+1+3/2)h(bar)=7/2h(bar)=7/2x1.05x10-34x2.011x1015=7.39x10-19J=4.61eV

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin 1⁄2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work.
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin-1/2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator....
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator. A uniform electric field is abruptly turned on for a time t and then abruptly turned off again. What is the probability of transition to the first excited state?
To generate the excited states for the quantum harmonic oscillator, one repeatedly applies the raising operator...
To generate the excited states for the quantum harmonic oscillator, one repeatedly applies the raising operator ˆa+ to the ground state, increasing the energy by ~ω with each step: ψn = An(ˆa+) nψ0(x) with En = (n + 1 2 )~ω where An is the normalization constant and aˆ± ≡ 1 √ 2~mω (∓ipˆ+ mωxˆ). Given that the normalized ground state wave function is ψ0(x) = mω π~ 1/4 e − mω 2~ x 2 , show that the first...
Consider an electron bound in a three dimensional simple harmonic oscillator potential in the n=1 state....
Consider an electron bound in a three dimensional simple harmonic oscillator potential in the n=1 state. Recall that the e- has spin 1/2 and that the n=1 level of the oscillator has l =1. Thus, there are six states {|n=1, l=1, ml, ms} with ml= +1, 0, -1 and ms = +/- 1/2. - Using these states as a basis find the six states with definite j and mj where J = L +s - What are the energy levels...
1) A quantum harmonic oscillator with frequency ωcontains 41 electrons. What is the energy of the...
1) A quantum harmonic oscillator with frequency ωcontains 41 electrons. What is the energy of the highest-energy electron? Assume that the electrons are in the lowest states possible. 2 a) An atom has a total of 18 electrons. What is the principal quantum number of the outermost shell? 2 b) How many electrons does the outermost shell shell contain? 3) Which of the following represents the possible range of integer values for the magnetic quantum number? a) 1 to l...
A harmonic oscillator with mass m and force constant k is in an excited state that...
A harmonic oscillator with mass m and force constant k is in an excited state that has quantum number n. 1) Let pmax=mvmaxx, where vmax is the maximum speed calculated in the Newtonian analysis of the oscillator. Derive an expression for pmax in terms of n, ℏ, k, and m. Express your answer in terms of the variables n, k, m, and the constant ℏ 2) Derive an expression for the classical amplitude A in terms of n, ℏ, k,...
A certain atom has an energy level 2.58 eV above the ground level. Once excited to...
A certain atom has an energy level 2.58 eV above the ground level. Once excited to this level, the atom remains at this level for 1.64E-7 s (on average) before emitting a photon and returning to the ground level. a) What is the energy of the photon (in electron volts)? What is its wavelength (in nanometers)? b) What is the smallest possible uncertainty in energy of the photon? Give your answer in electron volts. c) Show that|?E/E|=|??/?|if |??/?|?1. Use this...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT