Question

Q. 2​(a) For the first excited state of harmonic oscillator, calculate <x>, <p>, <x2>, and <p2>...


Q. 2​(a) For the first excited state of harmonic oscillator, calculate <x>, <p>, <x2>, and <p2>
explicitly by spatial integration. (b) Check that the uncertainty principle is obeyed.
(c) Compute <T> and <V>. .

Homework Answers

Answer #1

please like thank you .....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For a particle in the first excited state of harmonic oscillator potential, a) Calculate 〈?〉1, 〈?〉1,...
For a particle in the first excited state of harmonic oscillator potential, a) Calculate 〈?〉1, 〈?〉1, 〈? 2〉1, 〈? 2〉1. b) Calculate (∆?)1 and (∆?)1. c) Check the uncertainty principle for this state. d) Estimate the length of the interval about x=0 which corresponds to the classically allowed domain for the first excited state of harmonic oscillator. e) Using the result of part (d), show that position uncertainty you get in part (b) is comparable to the classical range of...
For the simple harmonic oscillator at first excited state the Hermite polynomial H1=x, (a)find the normalization...
For the simple harmonic oscillator at first excited state the Hermite polynomial H1=x, (a)find the normalization constant C1 (b) <x> (c) <x2>, (d) <V(x)> for this state.
Consider the ground state of the harmonic oscillator. (a) (7 pts) Calculate the expectation values <x>,...
Consider the ground state of the harmonic oscillator. (a) (7 pts) Calculate the expectation values <x>, <x2>, <p> and <p2>. (b) (3 ps) What is the product ΔxΔp, where the two quantities are standard deviations? (This is easy if you did part (a)). How does this answer compare with the prediction of the Uncertainty Principle?
For a harmonic oscillator in the ground-state, determine △p and △x. How does the value of...
For a harmonic oscillator in the ground-state, determine △p and △x. How does the value of △p△x compare to the Heisenberg Uncertainty Principle?
Calculate the standard deviation of momentum for the second excited state of a harmonic oscillator.
Calculate the standard deviation of momentum for the second excited state of a harmonic oscillator.
Calculate the expectation value of momentum for the second excited state of the harmonic oscillator. Show...
Calculate the expectation value of momentum for the second excited state of the harmonic oscillator. Show steps for both integral and bracket notation please.
a) For a 1D linear harmonic oscillator find the first order corrections to the ground state...
a) For a 1D linear harmonic oscillator find the first order corrections to the ground state due to the Gaussian perturbation. b) Find the first order corrections to the first excited state. Please show all work.
Imagine a harmonic oscillator with Hamiltonian H=p^2/2m+½x^2 For simplicity, we will assume that m=ℏ=1. First, we...
Imagine a harmonic oscillator with Hamiltonian H=p^2/2m+½x^2 For simplicity, we will assume that m=ℏ=1. First, we set up our system in the first excited state of this Hamiltonian. Second, we turn on an extra potential, V_ex(x)=x^4. Third, before the added potential has a chance to change the system state, we measure the energy.By expressing H and V_ex in terms of the raising and lowering operators, evaluate the average energy we would see if we repeated this whole process many times.
A harmonic oscillator with mass m and force constant k is in an excited state that...
A harmonic oscillator with mass m and force constant k is in an excited state that has quantum number n. 1) Let pmax=mvmaxx, where vmax is the maximum speed calculated in the Newtonian analysis of the oscillator. Derive an expression for pmax in terms of n, ℏ, k, and m. Express your answer in terms of the variables n, k, m, and the constant ℏ 2) Derive an expression for the classical amplitude A in terms of n, ℏ, k,...
The ground state of a particle is given by the time‐dependent wave function Ψ0(x, t) =...
The ground state of a particle is given by the time‐dependent wave function Ψ0(x, t) = Aeαx^2+iβt​​​​​​ with an energy eigenvalue of E0 = ħ2α/m a. Determine the potential in which this particle exists. Does this potential resemble any that you have seen before? b. Determine the normalization constant A for this wave function. c. Determine the expectation values of x, x2, p, and p2. d. Check the uncertainty principle Δx and Δp. Is their product consistent with the uncertainty...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT