Question

For the simple harmonic oscillator at first excited state the Hermite polynomial H1=x, (a)find the normalization...

  1. For the simple harmonic oscillator at first excited state the Hermite polynomial H1=x, (a)find the normalization constant C1 (b) <x> (c) <x2>, (d) <V(x)> for this state.

Homework Answers

Answer #1

thumbs up please

If you have any doubt regarding this particular question then please comment

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q. 2​(a) For the first excited state of harmonic oscillator, calculate <x>, <p>, <x2>, and <p2>...
Q. 2​(a) For the first excited state of harmonic oscillator, calculate <x>, <p>, <x2>, and <p2> explicitly by spatial integration. (b) Check that the uncertainty principle is obeyed. (c) Compute <T> and <V>. .
For a particle in the first excited state of harmonic oscillator potential, a) Calculate 〈?〉1, 〈?〉1,...
For a particle in the first excited state of harmonic oscillator potential, a) Calculate 〈?〉1, 〈?〉1, 〈? 2〉1, 〈? 2〉1. b) Calculate (∆?)1 and (∆?)1. c) Check the uncertainty principle for this state. d) Estimate the length of the interval about x=0 which corresponds to the classically allowed domain for the first excited state of harmonic oscillator. e) Using the result of part (d), show that position uncertainty you get in part (b) is comparable to the classical range of...
a) For a 1D linear harmonic oscillator find the first order corrections to the ground state...
a) For a 1D linear harmonic oscillator find the first order corrections to the ground state due to the Gaussian perturbation. b) Find the first order corrections to the first excited state. Please show all work.
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin 1⁄2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work.
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin-1/2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin-1/2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work
(a) Write down explicitly the first and second harmonic-oscillator wave functions, including normalization constants (b) Show...
(a) Write down explicitly the first and second harmonic-oscillator wave functions, including normalization constants (b) Show that the second harmonic-oscillator wave function is normalized (c) Show that the two functions in part (a) are orthogonal
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator....
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator. A uniform electric field is abruptly turned on for a time t and then abruptly turned off again. What is the probability of transition to the first excited state?
To generate the excited states for the quantum harmonic oscillator, one repeatedly applies the raising operator...
To generate the excited states for the quantum harmonic oscillator, one repeatedly applies the raising operator ˆa+ to the ground state, increasing the energy by ~ω with each step: ψn = An(ˆa+) nψ0(x) with En = (n + 1 2 )~ω where An is the normalization constant and aˆ± ≡ 1 √ 2~mω (∓ipˆ+ mωxˆ). Given that the normalized ground state wave function is ψ0(x) = mω π~ 1/4 e − mω 2~ x 2 , show that the first...
A harmonic oscillator with mass m and force constant k is in an excited state that...
A harmonic oscillator with mass m and force constant k is in an excited state that has quantum number n. 1) Let pmax=mvmaxx, where vmax is the maximum speed calculated in the Newtonian analysis of the oscillator. Derive an expression for pmax in terms of n, ℏ, k, and m. Express your answer in terms of the variables n, k, m, and the constant ℏ 2) Derive an expression for the classical amplitude A in terms of n, ℏ, k,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT