Question

a) For a 1D linear harmonic oscillator find the first order corrections to the ground state...

a) For a 1D linear harmonic oscillator find the first order corrections to the ground state due to the Gaussian perturbation.

b) Find the first order corrections to the first excited state.

Please show all work.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a one dimensional Harmonic oscillator. Use perturbation theory to find the energy corrections up to...
Consider a one dimensional Harmonic oscillator. Use perturbation theory to find the energy corrections up to second order in the perturbative parameter ? for a perturbative potential of the kind: a) V = ?x b) V = ?x^3.
For the simple harmonic oscillator at first excited state the Hermite polynomial H1=x, (a)find the normalization...
For the simple harmonic oscillator at first excited state the Hermite polynomial H1=x, (a)find the normalization constant C1 (b) <x> (c) <x2>, (d) <V(x)> for this state.
For a particle in the first excited state of harmonic oscillator potential, a) Calculate 〈?〉1, 〈?〉1,...
For a particle in the first excited state of harmonic oscillator potential, a) Calculate 〈?〉1, 〈?〉1, 〈? 2〉1, 〈? 2〉1. b) Calculate (∆?)1 and (∆?)1. c) Check the uncertainty principle for this state. d) Estimate the length of the interval about x=0 which corresponds to the classically allowed domain for the first excited state of harmonic oscillator. e) Using the result of part (d), show that position uncertainty you get in part (b) is comparable to the classical range of...
5) Unlike the particle in the 1D box and the harmonic oscillator, the energy of the...
5) Unlike the particle in the 1D box and the harmonic oscillator, the energy of the ground state of the 2D rigid rotor is zero. What is the difference between these cases that allows the energy to be zero for the rigid rotor in 2D?
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator....
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator. A uniform electric field is abruptly turned on for a time t and then abruptly turned off again. What is the probability of transition to the first excited state?
Calculate the expectation value of momentum for the second excited state of the harmonic oscillator. Show...
Calculate the expectation value of momentum for the second excited state of the harmonic oscillator. Show steps for both integral and bracket notation please.
The ground-state energy of a harmonic oscillator is 6 eV. If the oscillator undergoes a transition...
The ground-state energy of a harmonic oscillator is 6 eV. If the oscillator undergoes a transition from its n=3 to n=2 level by emitting a photon, what is the energy (in eV) of the emitted photon?
In lab you create a system where the Hamiltonian can be written as ? = ?0...
In lab you create a system where the Hamiltonian can be written as ? = ?0 + ?, where ?0 is the Simple Harmonic Oscillator Hamiltonian,,-h22md2dx2+12kx2 , and ? is an applied perturbation given by, Dx4. What is the first order correction to the energy ground state energy,   Ψ0=mωℏπ14 e(-mωx22ℏ) What is the first order correction to the first excited state energy, Ψ1=mωℏπ142mωℏ xe-mωx22ℏ For the Simple Harmonic Oscillator system, the fundamental frequency is the v=0 to v=1 transition. Based...
Q. 2​(a) For the first excited state of harmonic oscillator, calculate <x>, <p>, <x2>, and <p2>...
Q. 2​(a) For the first excited state of harmonic oscillator, calculate <x>, <p>, <x2>, and <p2> explicitly by spatial integration. (b) Check that the uncertainty principle is obeyed. (c) Compute <T> and <V>. .
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and...
A quantum mechanical simple harmonic oscillator has a 1st excited state with energy 3.3 eV and there are eight spin 1⁄2 particles in the oscillator. How much energy is needed to add a ninth electron. Explain and show your work.