Question

An insulated cylinder is fitted with an airtight piston that is free to slide up and...

An insulated cylinder is fitted with an airtight piston that is free to slide up and down and is connected to a rod. Contained within the cylinder is an ideal gas initially at a pressure of 120 kPa and temperature of 293 K. Suddenly the piston is forced downward creating an additional 200 kPa of pressure on the gas and as a result the cylinder volume decreases to one-half of its original volume.

(a) What is the final temperature of the gas?

(b) This process is best described as (circle one option): Isothermal, Isovolumetric, Isobaric, Adiabatic, None of these.

(c) Justify your choice for part (b).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An insulated cylinder is fitted with an airtight piston that is free to slide up and...
An insulated cylinder is fitted with an airtight piston that is free to slide up and down and is connected to a rod, as shown in the figure. Contained within the cylinder is an ideal gas initially at a pressure of 120 kPa and temperature of 293 K. Suddenly the piston is forced downward creating an additional 200 kPa of pressure on the gas and as a result the cylinder volume decreases to one-half of its original volume. (a) What...
An ideal gas is enclosed in a container fitted with a frictionless piston in a way...
An ideal gas is enclosed in a container fitted with a frictionless piston in a way that the gas pressure is constantly equal to 44.0 kPa. The volume of the gas is reduced from 3.50 m3 to 3.10 m3. How much work is done on the gas?
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 3.00 L and the pressure is initially 105 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 65.0 J of work is then done on the piston, compressing the gas (in other words, the gas does −65.0 J of work). The work is done very slowly so that the gas maintains a...
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g...
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g of ice at -10 C. Heat is supplied to the contents at a constant rate by a 100 W heater. Make a graph showing temperature of the cylinder contents as a function of time starting at t = 0, when the temperature is -10 C and ending when the temperature is 110 C. ( c = 2.0 kJ/ kg K for specific heat of...
A cylinder contains an ideal gas at the temperature of 300 K and is closed by...
A cylinder contains an ideal gas at the temperature of 300 K and is closed by a movable piston. The gas, which is initially at a pressure of 3 atm occupying a volume of 30 L, expands isothermally to a volume of 80 L. The gas is then compressed isobarically, returning to its initial volume of 30 L. Calculate the work done by gas: a) in isothermal expansion; b) in isobaric compression, c) in the whole process; and d) Calculate...
A cylinder with a moveable piston on top, free to move up and down, contains one...
A cylinder with a moveable piston on top, free to move up and down, contains one mole of an ideal gas initially at a temperature of Ti = 3.8°C. The cylinder is heated at a constant pressure of 1.00 atm, and it expands to seven times its original volume. (a) Calculate the new temperature Tf of the gas (in K). (No Response) K (b) Calculate the work done (in kJ) on the gas during the expansion.
A gas is enclosed in a cylinder fitted with a light frictionless piston and maintained at...
A gas is enclosed in a cylinder fitted with a light frictionless piston and maintained at atmospheric pressure. When 254 kcal of heat is added to the gas, the volume is observed to increase slowly from 12.0 m3 to 16.2 m3 . A. Calculate the work done by the gas B. Calculate the change in internal energy of the gas.
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system...
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system and develops a process from T1 = 300 K, P1 = 200 kPa to T2 = 1500 K and P2 = 150 kPa. Determine the specific entropy change in kJ / (kg K). 2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 = 800 ° F and P1 = 100 lbf / in2 to P2 = 20 lbf...
A quantity of gas in a piston cylinder is at room temperature (20°C) and is heated...
A quantity of gas in a piston cylinder is at room temperature (20°C) and is heated in an isobaric(constant pressure)process. What will be the temperature of the gas in degrees Celsius when it has expanded to a volume of 0.600m3?
A cylinder if fitted with a floating piston oriented horizontally (the air is the system and...
A cylinder if fitted with a floating piston oriented horizontally (the air is the system and by having a floating piston it maintains constant pressure). It contains 24.5 L of air at 25.0C and 1 bar pressure. The system is then heated to 250.0C. Air can be considered a diatomic gas and therefore would have a Cv = 5R/2, where R is the ideal gas constant. Also for gases Cp = Cv +R. How much work was done (in J)...