Question

A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...

A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 3.00 L and the pressure is initially 105 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 65.0 J of work is then done on the piston, compressing the gas (in other words, the gas does −65.0 J of work). The work is done very slowly so that the gas maintains a constant temperature. You should sketch this process on a P-V diagram, to get an idea about what is going on.

(a) Find the change in internal energy of the gas in this process.

(b) Find the final volume occupied by the gas.

(c) Find the final pressure of the gas.

Homework Answers

Answer #1

given P1 = 105000 Pa = 105000N/m2

V1 = 3 L = 3 x10-3 m3

so T1 = P1V1 /nR = (105000) x (3 x10-3)/ 8.314 = 37.88 degree c

as isothermal so T2 = T1 = 37.88 degree C

in isothremal work done W = P1 V1 x ln(V2/V1) = 105000 x0.003 x ln (V2/3)

as W = 65 J

105000 x0.003 x ln (V2/3) = 65

so V2 = 3.68 L ...........asnwer (b)

c) as isothermal

P1 V1 = P2 V2

105 x 3 =P2x 3.68

P2 = 85.42 kPa ...............(c)

a) as T = 0 ( isothermal)

so U = m C T

U = 0.................(a)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas...
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas while the piston remains locked in place until the absolute temperature of the gas doubles. 1. The pressure of the gas a. doubles b. stays the same c. drops in half 2. The work done by the surroundings on the gas is a. positive b. negative c. zero 3. The thermal energy of the gas a. doubles b. stays the same c. drops in...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 6.4×105Pa on the gas. The gas is cooled until its temperature has decreased to 27∘C. For the gas CV = 11.65 J/mol⋅K, and the ideal gas constant R = 8.314 J/mol⋅K. 1.Find the work done by the gas during this process. 2.What is the change in the internal (thermal) energy of...
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and...
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and 1 atm. (a) What is its initial internal energy? _____ kJ (b) Find its final internal energy and the work done by the gas when 420 J of heat are added at constant pressure. final internal energy ________kJ work done by the gas _______kJ (c) Find the same quantities when 420 J of heat are added at constant volume. finale internal energy ________kJ work...
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is...
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is in thermal contact with a heat bath initially at 310 K. What is the change in molar entropy if the gas is heated to 600 K if: A. The piston is blocked B. The piston is allowed to move freely against atmospheric pressure
A closed, cylindrical piston contains an ideal gas initially at a volume of 1.00L, temperature of...
A closed, cylindrical piston contains an ideal gas initially at a volume of 1.00L, temperature of 25.0ºC and internal pressure of 1.00 bar. The gas is compressed by applying an external pressure of 1.5bar to a volume of 0.200L. a. (20 pts) What is the work done in compressing the gas? b. (15 pts) If the above piston had diathermal walls and the process occurred isothermally, how much heat would be exchanged? Show steps and Ill rate! Thanks for the...
A cylinder with a moveable piston holds 1.20 mol of argon at a constant temperature of...
A cylinder with a moveable piston holds 1.20 mol of argon at a constant temperature of 295 K. As the gas is compressed isothermally, its pressure increases from 101 kPa to 145 kPa. (a) Find the final volume of the gas. (answer in: m3) (b) Find the work done by the gas. (answer in: kJ) (c) Find the heat added to the gas. (.. kJ)
A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure...
A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure PA = 2.5 atm and volume VA = 0.80 m3. It undergoes the following cyclic process: A -> B: I There is isothermal expansion to volume double of the original. B -> C: Constant-volume process back to its original pressure . C -> A: Constant-pressure process back to its initial state a) Draw a Pressure volume diagram for the cycle. You don't need to...
An ideal gas is enclosed in a cylinder with a movable piston on top of it....
An ideal gas is enclosed in a cylinder with a movable piston on top of it. The piston has a mass of 8,000 g and an area of 5.00 cm2 and is free to slide up and down, keeping the pressure of the gas constant. (a) How much work is done on the gas as the temperature of 0.155 mol of the gas is raised from 30.0°C to 330°C? _______ J
A vertical cylinder contains N molecules of a monatomic ideal gas and is closed off at...
A vertical cylinder contains N molecules of a monatomic ideal gas and is closed off at the top by a piston of mass M and area A. The acceleration due to gravity is g. The heat capacities of the piston and cylinder are negligibly small, and any frictional forces between the piston and the cylinder walls can be neglected. The whole system is thermally insulated. Initially, the piston is clamped in position so that the gas has a volume V0...
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure...
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure Pi = 2.03 ✕ 105 Pa, initial volume Vi = 1.00 ✕ 10−2 m3, and initial temperature Ti = 128 K. (a) What is the work done on the gas during a constant-pressure compression, after which the final volume of the gas is 2.50 L? J (b) What is the work done on the gas during an isothermal compression, after which the final pressure...