Question

An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g...

An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g of ice at -10 C. Heat is supplied to the contents at a constant rate by a 100 W heater. Make a graph showing temperature of the cylinder contents as a function of time starting at t = 0, when the temperature is -10 C and ending when the temperature is 110 C. ( c = 2.0 kJ/ kg K for specific heat of ice from -10 to 0 C and of the steam from 100 to 110 C)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An insulated piston–cylinder device initially contains 20 L of air at 140 kPa and 27 °C....
An insulated piston–cylinder device initially contains 20 L of air at 140 kPa and 27 °C. Air is now heated for 10 min by a 100-W resistance heater placed inside the cylinder. The pressure of air is maintained constant during this process, and the surroundings are at 27 °C and 100 kPa. Determine the exergy destroyed during this process.
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A resistance heater is operated within the cylinder with a current of 0.6 A from a 300 V source until the volume doubles. At the same time a heat loss of 7 kJ occurs. Part A)Determine the final temperature (T2). Part B)Determine the duration of the process. Part C) What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
A piston-cylinder device with a set of stops initially contains 0.35 kg of steam at 1.0...
A piston-cylinder device with a set of stops initially contains 0.35 kg of steam at 1.0 MPa and 900 degrees C. The location of the stops corresponds to 44 percent of the initial volume. Now the steam is cooled. Determine the magnitude of the compression work if the final state is (A) 1.0 MPa and 600 degrees C and W=. kJ (B) 500 kPa. W=. kJ (C) Also determine the temperature at the final state in part (B). T2=. C
The piston-cylinder system is filled with a steam of 2.5m3 at 10 barometric pressure and 450oC....
The piston-cylinder system is filled with a steam of 2.5m3 at 10 barometric pressure and 450oC. When the condensation is about to start by cooling at a constant pressure. (1) steam mass; (2) final temperature; (3) heat transfer;
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure...
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure of 500 kPa abs. Then, a weakness in the cylinder wall blows out and creates a hole. Air escapes through the hole until the piston drops far enough to cover the hole. At that point, the volume is half the initial volume. During this process, 75 kJ of heat is transferred to the 100 kPa, 300 K surroundings. Using Cp = 1.005 kJ/kg-K and...
A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot...
A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot 0.35kg copper cylinder is dropped into it and the lid quickly closed. The final temperature of the system is 100◦C, with 5g of steam in the container. (a) How much heat was transferred to the water (in all phases); (b) How much to the bowl? (c) What must have been the original temperature of the cylinder? The specific heat of copper is 386 J/kg·K....
A piston cylinder contains 2 lbm of air and operates at a constant pressure of 400...
A piston cylinder contains 2 lbm of air and operates at a constant pressure of 400 psia. The initial volume is 1 ft.3 and the initial temperature is 100°F. The final volume is 4 ft.3 and the final temperature is 1780°F. Determine the work and its direction (in or out) and the heat transfer and its direction, in Btu/lbm.
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C....
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C. The atmospheric pressure on the outside of the system is P=1.0 bar. Heat is then added until the water is completely converted to saturated vapor. (a) What are the changes in specific volume, v2-v1 (m3/kg) and internal energy, u2-u1 (kJ/kg) of the water for this process? (b) How much specific work, if any, is done by the system? (c) What is the amount of...
Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston...
Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston is 4 kg and the area of ​​the piston is 4.0 cm2. The following process takes place by external heat transfer. (Gravity acceleration is 10 m / s2). 1. Calculate the pressure inside the cylinder in kPa. 2. The cylinder contains 0.1 kg of water vapor, and the temperature of the water vapor is 150oC. Find the volume and internal energy of water vapor...