Question

1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system...

1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system and develops a process from T1 = 300 K, P1 = 200 kPa to T2 = 1500 K and P2 = 150 kPa. Determine the specific entropy change in kJ / (kg K).
2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 = 800 ° F and P1 = 100 lbf / in2 to P2 = 20 lbf / in2. Determine the specific entropy change in Btu / (lb ° R).
3-One kilogram of air, as the ideal gas, is contained in a cylinder-piston system at a pressure of 400 kPa and 600 K. The air expands adiabatically and irreversibly up to 150 kPa. Calculate the work done by air in kJ.
4-A certain amount of CO2 enters a compressor at 1 bar and 300 K that works in a steady state and can be considered adiabatic. At the outlet, the gas is at 10 bar and 520 K. It determines the entropy generation rate, in kJ / (kg K), for the gas considered ideal.

5- Saturated steam at 300 ° F enters an adiabatic compressor with a mass flow of 5 lb / s. The outlet pressure is 800 lbf / in2. If the input power of this device is 2150 hp, determine the entropy generation rate in hp / ° R.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Saturated steam at 300 ° F enters an adiabatic compressor with a mass flow of 5...
Saturated steam at 300 ° F enters an adiabatic compressor with a mass flow of 5 lb / s. The outlet pressure is 800 lbf / in2. If the input power of this device is 2150 hp, determine the entropy generation rate in hp / ° R.
2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 =...
2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 = 800 ° F and P1 = 100 lbf / in2 to P2 = 20 lbf / in2. Determine the specific entropy change in Btu / (lb ° R).
A gas contained in a vertical piston–cylinder assembly by a piston with a face area of...
A gas contained in a vertical piston–cylinder assembly by a piston with a face area of 40 in2 and weight of 100 lbf. The atmosphere exerts a pressure of 14.7 lbf/in2 on top of the piston. A paddle wheel transfers 3 Btu of energy to the gas during a process in which the elevation of the piston increases slowly by 4 ft. The piston and cylinder are poor thermal conductors, and friction between the piston and cylinder can be neglected....
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is...
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is in thermal contact with a heat bath initially at 310 K. What is the change in molar entropy if the gas is heated to 600 K if: A. The piston is blocked B. The piston is allowed to move freely against atmospheric pressure
Ammonia contained in a piston–cylinder assembly, initially saturated vapor at T1 = 4°F, undergoes an isothermal...
Ammonia contained in a piston–cylinder assembly, initially saturated vapor at T1 = 4°F, undergoes an isothermal process to a final specific volume v2 = 5.2 ft3/lb. Determine the final pressure, in lbf/in2, and the final quality, x2.
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 =...
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 = 280 K to p2 = 14 bar. The initial volume is 0.2 m3. The process is described by pV1.25 = constant. Assuming ideal gas behavior and neglecting kinetic and potential energy effects, determine the work and heat transfer for the process, each in kJ, using constant specific heats evaluated at 300 K, and data from Table A-23.
An insulated cylinder is initially divided into halves by a frictionless, thermally conducting piston. On one...
An insulated cylinder is initially divided into halves by a frictionless, thermally conducting piston. On one side of the piston is 1 m3 of a gas at 300 K, 2 bar. On the other side is 1 m3 of the same gas at 300 K, 1 bar.The piston is released and equilibrium is attained, with the piston experiencing no change of state. Employing the ideal gas model for the gas, determine (b) the final pressure, in bar. (c) the amount...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state of 800 kPa, 500 K. Initially air is at 110 kPa and 25oC. During the compression process heat transfer takes place with the ambient maintained at 25oC. Assume air as an ideal gas (R =0.287 kJ/kg) and has constant specific heats of Cp = 1.004 kJ/kgK and Cv = 0.717 kJ/kgK. If the mass of air in the cylinder is 0.1286 kg, determine a)...
One mole of an ideal gas is contained in a cylinder with a movable piston. The...
One mole of an ideal gas is contained in a cylinder with a movable piston. The temperature is constant at 76°C. Weights are removed suddenly from the piston to give the following sequence of three pressures. a. P1 = 5.10 atm (initial state) b. P2 = 2.23 atm c. P3 = 1.00 atm (final state) What is the total work (in joules) in going from the initial to the final state by way of the preceding two steps? _________J (need...
A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is...
A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is pv1.2 = constant. The mass of the gas is 0.4 lb and the following data are known: p1 = 160 lbf/in.2, V1 = 1 ft3, and p2 = 300 lbf/in.2 During the process, heat transfer from the gas is 2.1 Btu. Kinetic and potential energy effects are negligible. Determine the change in specific internal energy of the gas, in Btu/lb. Δu⁢=