Question

Consider the free energy change during a process of changing composition in a mixture according to...

Consider the free energy change during a process of changing composition in a mixture according to the following equation: ∆? = ∆? ? + ?????

a. How do we understand the spontaniety of this mixing process ?

b. How do we calculate the standard free energy change ∆? ? as a function of temperature for the system ?

c. Explain how the standard state for mixtures is different than the standard state for pure systems

d. How does Ellingham diagram help us in finding the equilibrium parameters of ?, ??2 ???

e. What is the meaning of Q? f. How do spontaniety and equilibrium depend on the value of Q/K?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The equilibrium constant of a system, K, can be related to the standard free energy change,...
The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG∘, using the following equation: ΔG∘=−RTlnK where T is a specified temperature in kelvins (usually 298 K) and R is equal to 8.314 J/(K⋅mol). Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values....
The equilibrium constant of a system, K, can be related to the standard free energy change,...
The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG∘, using the following equation: ΔG∘=−RTlnK where T is a specified temperature in kelvins (usually 298 K) and R is equal to 8.314 J/(K⋅mol). Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values....
± Free Energy and Chemical Equilibrium The equilibrium constant of a system, K, can be related...
± Free Energy and Chemical Equilibrium The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG, using the following equation: ΔG∘=−RTlnK where T is standard temperature in kelvins and R is equal to 8.314 J/(K⋅mol). Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the...
At −73∘C, the process X⟶Y+Z has a standard free energy change of 11.5kJmol. What is the...
At −73∘C, the process X⟶Y+Z has a standard free energy change of 11.5kJmol. What is the free energy change (in kilojoules per mole) at the same temperature with [X]=0.65 M, [Y]=1.8M, and [Z]=2.5M? The universal gas constant is 8.314Jmol K. Your answer should have three significant figures. (Round your answer to one decimal place). Do not include units in your answer.
The standard-state free energy change in oxidizing NADH with oxygen is -220 kJ/mol (-52.6 kcal/mol). If...
The standard-state free energy change in oxidizing NADH with oxygen is -220 kJ/mol (-52.6 kcal/mol). If we accept this value as representative of the actual free energy released (ΔG), which is not necessarily the case (see previous problem), then how many ATPs could potentially be synthesized per NADH oxidized if the cost of ATP synthesis was 11.4 kcal/mol? Report your answer to the nearest tenths.
Item 5 The equilibrium constant of a system, K, can be related to the standard free...
Item 5 The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG, using the following equation: ΔG∘=−RTlnK where T is standard temperature in kelvins and R is the gas constant. Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values. Part A Acetylene,...
2. p1V1γ= p2V2γ is only correct when (a) a perfect gas undergoes an adiabatic process.        (b)...
2. p1V1γ= p2V2γ is only correct when (a) a perfect gas undergoes an adiabatic process.        (b) a perfect gas undergoes a reversible process. (c) a perfect gas undergoes a reversible adiabatic process.     (d) a real gas undergoes a reversible adiabatic process.      4. If a simple (meaning one-component, single phase) and homogeneous closed system undergoes an isobaric change with expansion work only, how Gibbs free energy varies with temperature?      (a) (G/T)p> 0        (b) (G/T)p< 0      (c) (G/T)p= 0        (d) Depending on...
Thermodynamics: Consider the equilibrium reaction A(g) + B(g) -><- C(g)+D(g). At T=298 K, the standard enthalpies...
Thermodynamics: Consider the equilibrium reaction A(g) + B(g) -><- C(g)+D(g). At T=298 K, the standard enthalpies of formation of the components in the gas phase are -20, -40, -30, and -10 kJ/mol for A,B,C, and D, respectively. The standard-state entropies of the components in the gas phase are 30, 50, 50, and 80 J/(mol K), in the same order. The vapor pressure of liquid C at this temperature is 0.1 bar, while all other components are volatile gases with Henry's...
Question -Organizational change goes beyond promotions and the threat of layoffs. What ways other than those...
Question -Organizational change goes beyond promotions and the threat of layoffs. What ways other than those discussed in the case would you use to entice people to embrace proposed changes? Provide several suggestions and justify their rationale. CASE STUDY- Blue Cross and Blue Shield, and Others: Understanding the Science behind Change Kevin Sparks has been trying to get his staff to change the way it monitors and supports the data center for the past year, but he hasn’t been getting...
a)How is it possible to determine if CaCO3 is Cl- free after synthesis? b)How can the...
a)How is it possible to determine if CaCO3 is Cl- free after synthesis? b)How can the Cl- ions be remove from CaCO3 after synthesis? I should answer the questions from the following experiment but if you know the answer and you are sure, yo do not need to read experiment. Please answer correctly because i hav no chance to make wrong :(((( Physical and Chemical Properties of Pure Substances Objective The aim of today’s experiment is to learn handling chemicals...