Question

± Free Energy and Chemical Equilibrium The equilibrium constant of a system, K, can be related...

± Free Energy and Chemical Equilibrium

The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG, using the following equation:

ΔG∘=−RTlnK

where T is standard temperature in kelvins and R is equal to 8.314 J/(K⋅mol).

Under conditions other than standard state, the following equation applies:

ΔGG∘+RTlnQ

In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values.

Part A)

At 25 ∘C the reaction from Part A has a composition as shown in the table below.

Substance Pressure
(atm)
C2H2(g) 5.35
H2(g) 4.85
C2H6(g) 3.25×10−2

What is the free energy change, ΔG, in kilojoules for the reaction under these conditions?

Express your answer numerically in kilojoules.

Homework Answers

Answer #1

C2H2 + 2H2 -----------------> C2H6

4.75      3.45                          4.25 x 10^-2

Qp = PC2H6 / PC2H2 PH22

      = 3.25 x 10^-2 / (5.35) (4.85)^2

       = 2.58 x 10^-4

R = 8.314 x 10^-3 kJ/ K mol

T = 273 + 25 = 298 K

G   = Go + RT lnQp

G   = Go + 2.303 RT log Qp

        = -241.9 + 2.303 x 8.314 x 10^-3 x 298 x log (2.58 x 10^-4)

=-241.9 -20.47 kJ

        = -262.37 kJ

G = -262.4 kJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The equilibrium constant of a system, K, can be related to the standard free energy change,...
The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG∘, using the following equation: ΔG∘=−RTlnK where T is a specified temperature in kelvins (usually 298 K) and R is equal to 8.314 J/(K⋅mol). Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values....
The equilibrium constant of a system, K, can be related to the standard free energy change,...
The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG∘, using the following equation: ΔG∘=−RTlnK where T is a specified temperature in kelvins (usually 298 K) and R is equal to 8.314 J/(K⋅mol). Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values....
Item 5 The equilibrium constant of a system, K, can be related to the standard free...
Item 5 The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG, using the following equation: ΔG∘=−RTlnK where T is standard temperature in kelvins and R is the gas constant. Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values. Part A Acetylene,...
In Part A, we saw that ΔG∘=−242.1 kJ for the hydrogenation of acetylene under standard conditions...
In Part A, we saw that ΔG∘=−242.1 kJ for the hydrogenation of acetylene under standard conditions (all pressures equal to 1 atm and the common reference temperature 298 K). In Part B, you will determine the ΔG for the reaction under a given set of nonstandard conditions. At 25 ∘C the reaction from Part A has a composition as shown in the table below. Substance Pressure (atm) C2H2(g) 5.35 H2(g) 3.95 C2H6(g) 4.25×10−2 What is the free energy change, ΔG,...
he thermodynamic properties for a reaction are related by the equation that defines the standard free...
he thermodynamic properties for a reaction are related by the equation that defines the standard free energy, ΔG∘, in kJ/mol: ΔG∘=ΔH∘−TΔS∘ where ΔH∘ is the standard enthalpy change in kJ/mol and ΔS∘ is the standard entropy change in J/(mol⋅K). A good approximation of the free energy change at other temperatures, ΔGT, can also be obtained by utilizing this equation and assuming enthalpy (ΔH∘) and entropy (ΔS∘) change little with temperature. Part A For the reaction of oxygen and nitrogen to...
In Part A, we saw that ΔG∘=−242.1 kJ for the hydrogenation of acetylene under standard conditions...
In Part A, we saw that ΔG∘=−242.1 kJ for the hydrogenation of acetylene under standard conditions (all pressures equal to 1 atm and the common reference temperature 298 K). In Part B, you will determine the ΔG for the reaction under a given set of nonstandard conditions. Part B At 25 ∘C the reaction from Part A has a composition as shown in the table below. Substance Pressure (atm) C2H2(g) 3.95 H2(g) 5.65 C2H6(g) 5.25×10−2 What is the free energy...
Part B At 25 ?C the reaction from Part A has a composition as shown in...
Part B At 25 ?C the reaction from Part A has a composition as shown in the table below. Substance/Pressure (atM): C2H2(g) / 4.05 H2(g) / 5.55 C2H6(g) / 5.25×10?2 What is the free energy change, ?G, in kilojoules for the reaction under these conditions? Express your answer numerically in kilojoules.
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms of the concentrations of the gases (in M) or as a function of the partial pressures of the gases (in atmospheres). In the latter case, the equilibrium constant is denoted as Kp to distinguish it from the concentration-based equilibrium constant K. Part A For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.155 at 1635 ∘C . What is Kp for the reaction at this temperature? Express...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms of the concentrations of the gases (in M) or as a function of the partial pressures of the gases (in atmospheres). In the latter case, the equilibrium constant is denoted as Kp to distinguish it from the concentration-based equilibrium constant K.' Part A For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.130 at 1668 ∘C . What is Kp for the reaction at this temperature? Express...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms of the concentrations of the gases (in M) or as a function of the partial pressures of the gases (in atmospheres). In the latter case, the equilibrium constant is denoted as Kp to distinguish it from the concentration-based equilibrium constant K. Part A For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.165 at 1521 ∘C . What is Kp for the reaction at this temperature? Express...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT