Question

A cylindrical rod of length L extents from a base wall of constant temperature To. Inside...

A cylindrical rod of length L extents from a base wall of constant temperature To. Inside the rod heat is produced due to electrical dissipation at a constant volumetric rate of So. Tip of the fin is insulated. Ambient temperature is Ta and heat transfer coefficient h between rod and surroundings may be assumed constant. Calculate steady state temperature profile in the rod and rate of heat loss to the surroundings.

Homework Answers

Answer #1

here is an easy and detailed solution for this question with step by step solution so please go throughout the whole solution it will surely help you .

Please please give your valuable feedback if it's really helpful to you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
It's a heat transfer question. A stainless steel fin with a constant base temperature (900K) and...
It's a heat transfer question. A stainless steel fin with a constant base temperature (900K) and with an insulated end. Apply convection at all cylindrical surfaces except the base and the tip. The convection coefficient, h = 50 W/(m2·K), and fluid temperature of T∞ = 300K. Plot the temperature distribution along the center axis line (T vs x). Include a contour plot across the cross section of the fin. Assume zero contact resistance between the sections. K=19.8W/m-k Cp=557J/Kg-K Rho= 7900Kg/m^3...
2.1Consider a solid cylindrical rod of length 0.15 m and diameter 0.05 m. The top and...
2.1Consider a solid cylindrical rod of length 0.15 m and diameter 0.05 m. The top and bottom surfaces of the rod are maintained at constant temperatures of 20oC and 95oC, respectively, while the side surface is perfectly insulated. 2.1.1 Draw a diagram to represent the situation described above. (3) 2.1.2 Determine the rate of heat transfer through the rod if it is made of copper, k = 380 W/m? oC. (4) 2.1.3 Determine the rate of heat transfer through the...
The wall of an industrial furnace is constructed from a fireclay brick layer which is covered...
The wall of an industrial furnace is constructed from a fireclay brick layer which is covered with another layer of ordinary brick. The outer surface wall temperature has a steady-state temperature of 110 °C when the ambient air has a temperature of 20°C. Heat is lost from the outer surface wall via convection and radiation. The internal furnace wall has a surface temperature of 500 DegreeC. Convection heat transfer coefficient between outer wall and air: 5 W/m2K Stefan-Boltzmann constant σ:...
The extent to which the tip condition affects the thermal performance of a fin depends on...
The extent to which the tip condition affects the thermal performance of a fin depends on the fin geometry and thermal conductivity, as well as the convection coefficient. Consider an alloyed aluminum (k = 180 W/m*K) rectangular fin of length L = 10 mm, thickness t = 1 mm, and width w >> t. The base temperature of the fin is Tb = 100°C, and the fin is exposed to a fluid of temperature T∞ = 25°C. Assuming a uniform...
Mercury at an inlet temperature of 75 °C flows through a 2 cm inside diameter tube...
Mercury at an inlet temperature of 75 °C flows through a 2 cm inside diameter tube at a flow rate of 1.5 kg/s. This tube is part of a nuclear reactor in which heat can be generated uniformly at any desired rate by adjusting the neutron flux level. Determine convection heat transfer coefficient, and the heat flux required for a 1.5 m length of tube required to raise the temperature of the mercury to 275 °C. Also determine if mercury...
A thin metallic wall may be constructed using copper (properties are given in the table). The...
A thin metallic wall may be constructed using copper (properties are given in the table). The piping is required to have a radius r = 0.008 m and carries steam at 385 K. The wall is inside a room surrounded by air at a temperature of 298 K. The wall is insulated with a material (properties are given in the table). Properties Copper Insulation material Thermal Conductivity (W/m per ˚C) 385 0.071 Density (kg/m3) 8940 453 i. If the external...
1-The temperature value inside a reactor in the treatment plant is 30 0C during operation. The...
1-The temperature value inside a reactor in the treatment plant is 30 0C during operation. The outdoor temperature in the winter period is 5oC. The wall thickness of the reactor is 0.10 m and its area is 20 m2. Air and reactor wall heat transfer coefficients and conductivity are given below. reactor = 20W / m2.K, creator = 0.8 W / m.K; outdoor environment = 10 W / m2.K a. Under these conditions, calculate the heat loss value from the...
Liquid, pumped through the inside of the pipe, is at a temperature Ti = 400K and...
Liquid, pumped through the inside of the pipe, is at a temperature Ti = 400K and provides a convection coefficient hi = 450 W/m2-K at the inner surface of the pipe. The inside and outside radii of the pipe are r1 = 0.25 m, r2 = 0.31 m. The thermal conductivity of the pipe is 240 W/m-K. The outside radius of the insulation, r3 = 0.35 m. The thermal conductivity of the insulation is 20 W/m-K. The outside surface is...
A Parabolic trough concentrator with width of 3 m and length of 25 m has an...
A Parabolic trough concentrator with width of 3 m and length of 25 m has an absorbed solar radiation per unit area of aperture of 600 W/m2. The receiver is a cylinder with an emittance of 0.3 and is surrounded by an evaluated glass cylindrical envelope. The absorber has a diameter of 50 mm and the transparent envelope has an outer diameter of 100 mm with a thickness of 5 mm. The collector is designed to heat a fluid entering...
Water flows through a pipe at an average temperature of T =50°C. The inner and outer...
Water flows through a pipe at an average temperature of T =50°C. The inner and outer radii of the pipe are r1 = 6 cm and r2 = 6.5 cm, respectively. The outer surface of the pipe is wrapped with a thin electric heater that consumes 300 W per m length of the pipe. The exposed surface of the heater is heavily insulated so that the entire heat generated in the heater is transferred to the pipe. Heat is transferred...