Question

Item 5 The equilibrium constant of a system, K, can be related to the standard free...

Item 5

The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG, using the following equation:

ΔG∘=−RTlnK

where T is standard temperature in kelvins and R is the gas constant.

Under conditions other than standard state, the following equation applies:

ΔGG∘+RTlnQ

In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values.

Part A

Acetylene, C2H2, can be converted to ethane, C2H6, by a process known as hydrogenation. The reaction is C2H2(g)+2H2(g)⇌C2H6(g)Use tabulated values of ΔfGo to calculate  ΔrGo ,and obtain the value of  Keq   for this reaction.

Express your answer using two significant figures.

Hints

Keq =

SubmitMy AnswersGive Up

Standard versus Nonstandard Conditions

In Part A, we calculatedΔG∘ for the hydrogenation of acetylene under standard conditions. In Part B, you will determine the ΔG for the reaction under a given set of nonstandard conditions.

Part B

At 25 ∘C the reaction from Part A has a composition as shown in the table below.

Substance Pressure
( bar)
C2H2(g) 4.85
H2(g) 5.15
C2H6(g) 4.25×10−2


What is the free energy change, ΔG, in kilojoules for the reaction under these conditions?

Express your answer numerically in kilojoules.

Hints

ΔG = kJ

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
± Free Energy and Chemical Equilibrium The equilibrium constant of a system, K, can be related...
± Free Energy and Chemical Equilibrium The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG, using the following equation: ΔG∘=−RTlnK where T is standard temperature in kelvins and R is equal to 8.314 J/(K⋅mol). Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the...
The equilibrium constant of a system, K, can be related to the standard free energy change,...
The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG∘, using the following equation: ΔG∘=−RTlnK where T is a specified temperature in kelvins (usually 298 K) and R is equal to 8.314 J/(K⋅mol). Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values....
The equilibrium constant of a system, K, can be related to the standard free energy change,...
The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG∘, using the following equation: ΔG∘=−RTlnK where T is a specified temperature in kelvins (usually 298 K) and R is equal to 8.314 J/(K⋅mol). Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values....
In Part A, we saw that ΔG∘=−242.1 kJ for the hydrogenation of acetylene under standard conditions...
In Part A, we saw that ΔG∘=−242.1 kJ for the hydrogenation of acetylene under standard conditions (all pressures equal to 1 atm and the common reference temperature 298 K). In Part B, you will determine the ΔG for the reaction under a given set of nonstandard conditions. At 25 ∘C the reaction from Part A has a composition as shown in the table below. Substance Pressure (atm) C2H2(g) 5.35 H2(g) 3.95 C2H6(g) 4.25×10−2 What is the free energy change, ΔG,...
In Part A, we saw that ΔG∘=−242.1 kJ for the hydrogenation of acetylene under standard conditions...
In Part A, we saw that ΔG∘=−242.1 kJ for the hydrogenation of acetylene under standard conditions (all pressures equal to 1 atm and the common reference temperature 298 K). In Part B, you will determine the ΔG for the reaction under a given set of nonstandard conditions. Part B At 25 ∘C the reaction from Part A has a composition as shown in the table below. Substance Pressure (atm) C2H2(g) 3.95 H2(g) 5.65 C2H6(g) 5.25×10−2 What is the free energy...
Acetylene, C2H2, can be converted to ethane, C2H6, by a process known as hydrogenation. The reaction...
Acetylene, C2H2, can be converted to ethane, C2H6, by a process known as hydrogenation. The reaction is C2H2(g)+2H2(g)⇌C2H6(g) Given the following data at standard conditions (all pressures equal to 1 atm and the common reference temperature 298 K), what is the value of Kp for this reaction? Substance ΔG∘f (kJ/mol) C2H2(g) 209.2 H2(g) 0 C2H6(g) −32.89 Express your answer using two significant figures.
Acetylene, C2H2, can be converted to ethane, C2H6, by a process known as hydrogenation. The reaction...
Acetylene, C2H2, can be converted to ethane, C2H6, by a process known as hydrogenation. The reaction is C2H2(g)+2H2(g)⇌C2H6(g) Given the following data at standard conditions (all pressures equal to 1 atm and the common reference temperature 298 K), what is the value of Kp for this reaction? Substaance .. G∘f (kJ/mol) C2H2(g)               209.2 H2(g) 0   C2H6(g)                -32.89   
he thermodynamic properties for a reaction are related by the equation that defines the standard free...
he thermodynamic properties for a reaction are related by the equation that defines the standard free energy, ΔG∘, in kJ/mol: ΔG∘=ΔH∘−TΔS∘ where ΔH∘ is the standard enthalpy change in kJ/mol and ΔS∘ is the standard entropy change in J/(mol⋅K). A good approximation of the free energy change at other temperatures, ΔGT, can also be obtained by utilizing this equation and assuming enthalpy (ΔH∘) and entropy (ΔS∘) change little with temperature. Part A For the reaction of oxygen and nitrogen to...
Part B At 25 ?C the reaction from Part A has a composition as shown in...
Part B At 25 ?C the reaction from Part A has a composition as shown in the table below. Substance/Pressure (atM): C2H2(g) / 4.05 H2(g) / 5.55 C2H6(g) / 5.25×10?2 What is the free energy change, ?G, in kilojoules for the reaction under these conditions? Express your answer numerically in kilojoules.
For a gaseous reaction, standard conditions are 298 K and a partial pressure of 1 atm...
For a gaseous reaction, standard conditions are 298 K and a partial pressure of 1 atm for all species. For the reaction C2H6(g)+H2(g)↽−−⇀2CH4(g) the standard change in Gibbs free energy is Δ?°=−69.0 kJ/mol. What is ΔG for this reaction at 298 K when the partial pressures are ?C2H6=0.300 atm, ?H2=0.500 atm, and ?CH4=0.950 atm?