Question

The gas phase reaction: 2A+B = 3C , is carried out in an isothermal packed bed...

The gas phase reaction: 2A+B = 3C , is carried out in an isothermal packed bed reactor. The rate is first order with respect to reactants A and B (second order overall) with the rate constant of 14 [liter2 /mole kg of catalyst sec.]. The feed is 50% A, 25 % B and 25 % inert at temperature of 500 K and P = 18 atm and a total flow rate of 20 mole/sec. The exit pressure is measured to be 6 atm. To produce 12 mole/sec of product C,

a) Write the relevant equations and using POLYMATH, give the profile of pressure and conversion along the catalyst bed till its exit, where the conditions are given above (Pexit = 6atm, Fc=12 mole/sec)

b) Calculate the amount of catalyst needed

c) Calculate the amount of catalyst needed, if the pressure drop in the reactor is ignored.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The gas phase reaction, 2A  B  C, is carried out in a PFR. The...
The gas phase reaction, 2A  B  C, is carried out in a PFR. The feed is equal molar in A and B and the entering temperature is 650K and the entering pressure is 21 atm. If the exit conversion is X, then the exit concentration of B (in mol/dm3 ) is:
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400 C) constant-pressure (1 atm) batch reactor in the presence of inerts (I). The initial gas composition in mole fractions is given by yA0 = 0.40; yB0 = 0.40; yC0 = 0.10; yI = 0.10. The reaction is first-order both in A and in B with a rate constant, k = 3.46 x10-2 dm3mol-1 s-1 at 400 C. (a) Set up a stoichiometric table. (b)...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and well mixed batch reactor. The initial moles of A and B are both 0.1 mole.  The rate of destruction of A is given by –rA = k*CA*CB, with k =  6.0 L/ (mol*min).  Calculate the amount of time (in minutes) that the reaction must proceed within a 10 L reactor in order to achieve a final concentration of A of 0.001 mol/L. Please express your answer to...
A packed bed reactor has the reaction A --> B occurring. The rate law is –rA...
A packed bed reactor has the reaction A --> B occurring. The rate law is –rA = kCA where k = 15 L/g-min. The superficial gas velocity is 4.8 kg/m2-s with a density of 0.45 kg/m3 and a viscosity of 3.9x10-5 kg/m-s. The porosity, catalyst density, and particle diameter are, respectively, 0.45, 2.2 g/cm3 and 0.255 cm. The cross sectional area of the reactor is 12 cm2. The inlet pressure is 100 kPa. Calculate the conversion ‘X’ when the catalyst...
In the gas-phase reaction 2A+B ? 3C + 2D, it was found that when 1.50 mole...
In the gas-phase reaction 2A+B ? 3C + 2D, it was found that when 1.50 mole A, 2.00 mole B and 1.00 mole D were mixed and allowed to come to equilibrium at 25oC, the resulting mixture contained 1.20 mol C at a total pressure of 2.00 bar. Calculate (a) the mole fractions of each species at equalibrium xA=, xB=, xc=, xD= (b) Kx = (c)Kp= (d) ?rGo= Please enter all answers in (a) with 3 decimals. for example, 0.4467...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C The reactor feed consists of a mixture of 50% A and 50% B. The reaction rate is: (-rA) = k1*CA*CB - k2*CC2 The inlet temperature is 500 K and the total pressure is 200 kPa. The volumetric feed flow rate is 10 m3/s. The rate constants have a values of: k1 = 0.1 m3/(mol*s) and k2 = 0,05 m3/(mol*s). a) Calculate the conversion of...
The gas phase irreversible reaction is carried out isothermally in a PBR      A → B The...
The gas phase irreversible reaction is carried out isothermally in a PBR      A → B The reaction is zero order. The entering temperature is 400 K, and the entering pressure is 10 atm. The flow is turbulent. For a 10 kg PBR with a pressure drop parameter α = 0.01 kg-1, the exit conversion was found to be 0.4. What catalyst weight of the PBR will you require if you need an exit conversion of 0.8, assuming that the particle...
The dehydration butanol of alumina is carried out over a silica alumina catalyst at 680 K....
The dehydration butanol of alumina is carried out over a silica alumina catalyst at 680 K. CH3CH2CH2CH2OH ? CH3 CH = CHCH3 + H2O The rate law is ??????? = ???????? (1 + ???????????? )2 with k = 0.065 mol/gcat•h•atm and KBu = 0.42 atm-1. R = 0.082 dm3-atm/mol/K. Pure butanol enters a thin tubed packed-bed reactor at a molar flow rate 50 kmol/hr and a pressure of 10 atm (l013 kPa). (a) What PBR catalyst weight is necessary to...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227 C) constant-volume batch reactor. The initial feed to the reactor consists of 40 mol% A and 60 mol% B at a total pressure of 10 atm. Measurements of the rate of reaction as a function of conversion yielded the following results: -rA (mol dm^-3 s^-1) x (1x10^8) 0.010 0.005 0.002 0.001 XA   0.0 0.2 0.4 0.6 Calculate the time required to achieve a conversion...
A laboratory scale packed bed reactor (PBR) with catalytic particles is used to make experimentswith an...
A laboratory scale packed bed reactor (PBR) with catalytic particles is used to make experimentswith an irreversible 1st order gas phase reaction A → product at 500 K. The rate constant forthe reaction, determined by conditions where mass transport resistance could be neglected, is found to k '= 1,6237 m3/kcat S . The particles are spherical with a diameter of D = 2 mm and onedensity of 1200 kg / m3. Radius R=1x10-3 Thiele modul Ø=44,141 4.2 The product formed...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT