Question

Prove that for any set of strings A, A* is a reflexive and transitive set containing...

Prove that for any set of strings A, A* is a reflexive and transitive set containing A. A* represents the Kleene closure over the set of strings A.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Give a formal proof: show that A* is a reflexive and transitive set containing A.
Give a formal proof: show that A* is a reflexive and transitive set containing A.
Prove that strong connectivity is reflexive, transitive and symmetric.
Prove that strong connectivity is reflexive, transitive and symmetric.
The subgroup relation ≤ on the set of subgroups G is reflexive, transitive, and anti-symmetric.
The subgroup relation ≤ on the set of subgroups G is reflexive, transitive, and anti-symmetric.
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t...
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t and z be elements of Q. then t R z if and only if t = (z+1) * n for some integer n.
Let S = {a, b, c}* be the set of all infinite strings containing only the...
Let S = {a, b, c}* be the set of all infinite strings containing only the characters a, b, and c. Prove that S is uncountable.
Let S1 and S2 be any two equivalence relations on some set A, where A ≠...
Let S1 and S2 be any two equivalence relations on some set A, where A ≠ ∅. Recall that S1 and S2 are each a subset of A×A. Prove or disprove (all three): The relation S defined by S=S1∪S2 is (a) reflexive (b) symmetric (c) transitive
Let S1 and S2 be any two equivalence relations on some set A, where A ≠...
Let S1 and S2 be any two equivalence relations on some set A, where A ≠ ∅. Recall that S1 and S2 are each a subset of A×A. Prove or disprove (all three): The relation S defined by S=S1∪S2 is (a) reflexive (b) symmetric (c) transitive
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation R on Z where (?, ?) ∈ ? if ? = ? . The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S C T.
Prove that if the relation R is symmetric, then its transitive closure, t(R)=R*, is also symmetric....
Prove that if the relation R is symmetric, then its transitive closure, t(R)=R*, is also symmetric. Please provide step by step solutions
Please answer True or False on the following: 1. Let L be a set of strings...
Please answer True or False on the following: 1. Let L be a set of strings over the alphabet Σ = { a, b }. If L is infinite, then L* must be infinite (L* is the Kleene closure of L) 2. Let L be a set of strings over the alphabet Σ = { a, b }. Let ! L denote the complement of L. If L is finite, then ! L must be infinite. 3. Let L be...