Question

Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C...

Consider a plug flow reactor with a reversible isothermal gas-phase reaction:
A + B <--> C
The reactor feed consists of a mixture of 50% A and 50% B. The reaction rate is: (-rA) = k1*CA*CB - k2*CC2 The inlet temperature is 500 K and the total pressure is 200 kPa. The volumetric feed flow rate is 10 m3/s. The rate constants have a values of: k1 = 0.1 m3/(mol*s) and k2 = 0,05 m3/(mol*s).
a) Calculate the conversion of A in a reactor of volume 10m3.
b) Calculate the maximum conversion of A in an infinitely long rector.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following gas-phase reaction takes place in a plug flow reactor (a tubular reactor) that has...
The following gas-phase reaction takes place in a plug flow reactor (a tubular reactor) that has a diameter of 6 inches and cross-sectional area of 0.0388 ft2: A --> B + C. The reaction rate depends only on the concentration of A, CA, and has the following form: rate of destruction of A = k * CA , where k= 0.12 s-1. The feed consists of pure A, and enters the reactor at a volumetric flowrate of 0.193 ft3/s. Determine...
The reversible first-order gas reaction ??? is to be carried out in a mixed flow reactor....
The reversible first-order gas reaction ??? is to be carried out in a mixed flow reactor. For operations at 300 K the volume of reactor required is 100 liters for 60% conversion of A. 4.1. What is the value of the reverse rate constant at 300K? 4.2. What is the equilibrium conversion at 300 K? 4.3. What is the equilibrium conversion at 400 K? 4.4. What should be the volume of the reactor for the same feed rate and conversion...
The elementary liquid phase reaction takes place in an adiabatic flow reactor. ? + ? →...
The elementary liquid phase reaction takes place in an adiabatic flow reactor. ? + ? → ? An equimolar feed in A and B enters at 300K, and the volumetric flow rate is 2 dm3 /s and CA0= 100 mol/m3 . a) Calculate the PFR and CSTR volumes to achieve 75 % conversion. b) If the outlet temperature of the reactor is 550 K, for complete conversion, calculate the inlet temperature of CSTR. HA°(273 K) = - 20 kcal/mol, HB°...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and well mixed batch reactor. The initial moles of A and B are both 0.1 mole.  The rate of destruction of A is given by –rA = k*CA*CB, with k =  6.0 L/ (mol*min).  Calculate the amount of time (in minutes) that the reaction must proceed within a 10 L reactor in order to achieve a final concentration of A of 0.001 mol/L. Please express your answer to...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227 C) constant-volume batch reactor. The initial feed to the reactor consists of 40 mol% A and 60 mol% B at a total pressure of 10 atm. Measurements of the rate of reaction as a function of conversion yielded the following results: -rA (mol dm^-3 s^-1) x (1x10^8) 0.010 0.005 0.002 0.001 XA   0.0 0.2 0.4 0.6 Calculate the time required to achieve a conversion...
For the homogeneous autocatalytic reaction A + B → B + B, where –rA = kCACB,...
For the homogeneous autocatalytic reaction A + B → B + B, where –rA = kCACB, aconversion rate of A of X = 0.44. The velocity constant is k = 10-3  m3 / (mol s). The feed stream of 0.1 m3 / s contains A with CA0  = 90 mol / m3 and B with CB0 = 10 mol / m3. It is considered whichreactor configuration that will be most suitable 1.1 The reaction must take place in a flow reactor. Set...
The isothermal and isobaric gas phase reaction A → B + C follows an elementary rate...
The isothermal and isobaric gas phase reaction A → B + C follows an elementary rate law and is to be carried out in a CSTR. The reaction constant k = 1.20 s-1 when the reaction temperature T = 300 K. (a) When pure A is fed to a CSTR at 300K and a volumetric flow rate of 5 dm3 /s,a conversion of X = 0.6 is achieved. Please determine the volume of the CSTR. (b) If the CSTR’s volume...
Express the rate of reaction (-rA) solely as a function of conversion for a gas-phase reaction,...
Express the rate of reaction (-rA) solely as a function of conversion for a gas-phase reaction, A → B + 2C, in a plug flow reactor. The feed contains 50% of inert gas. What is the total species concentration in the effluent at 80% conversion relative to the initial concentration of all species (i.e., what is CT/CTo)?
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a flow reactor. An equal molar feed in A and B enters at 27 oC, and the volumetric flow rate is 2 L/s. The feed concentration is CA0 = 0.1 mol/L. a) Calculate the PFR and CSTR volumes necessary to achieve 85% conversion when the reaction is carried out adiabatically. b) What is the maximum inlet temperature one could have so that the boiling point...
The following parallel liquid-phase reactions are known to occur in a 0.3 m3 plug flow reactor:...
The following parallel liquid-phase reactions are known to occur in a 0.3 m3 plug flow reactor: Reaction 1: M + K --> P + 0.5 T with rT = 0.50 CM Reaction 2: M + K --> 0.7 S + U with rU = 0.21 CM2 M and K are fed into the reactor in a single stream, and the initial concentrations of M and K (CM0 and CK0) are each 12 mol L-1.  What is the overall yield of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT