Question

5. Show that if a|b then −a|b. 6. Prove or disprove: For any integers a,b, c,...

5. Show that if a|b then −a|b.

6. Prove or disprove: For any integers a,b, c, if a ∤ b and b ∤ c, then a ∤ c.

7. Use mathematical induction to show that, ∀n ≥ 0, 2|(3n +1)

8. Solve the following. (a) List the first four terms of the recursive sequence defined by s1 = 1 and ∀n ≥ 2, sn = (sn−1 + 1) 2 . (b) Given that ∑i=1n   (i= n(n+1)/2) , find the sum 2 + 4 + 6 +...+ 200

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Use mathematical induction to show that, ∀n ≥ 3, 2n2 + 1 ≥ 5n 2....
1. Use mathematical induction to show that, ∀n ≥ 3, 2n2 + 1 ≥ 5n 2. Letting s1 = 0, find a recursive formula for the sequence 0, 1, 3, 7, 15,... 3. Evaluate. (a) 55mod 7. (b) −101 div 3. 4. Prove that the sum of two consecutive odd integers is divisible by 4 5. Show that if a|b then −a|b. 6. Prove or disprove: For any integers a,b, c, if a ∤ b and b ∤ c, then...
3. Prove or disprove: For integers a and b, if a|b, then a^2|b^2. 4. Suppose that...
3. Prove or disprove: For integers a and b, if a|b, then a^2|b^2. 4. Suppose that for sets A,B,C, and D,A∩B⊆C∩D and A⊆C\D. Prove that A and B are disjoint.
Prove or disprove the following statements. Remember to disprove a statement you have to show that...
Prove or disprove the following statements. Remember to disprove a statement you have to show that the statement is false. Equivalently, you can prove that the negation of the statement is true. Clearly state it, if a statement is True or False. In your proof, you can use ”obvious facts” and simple theorems that we have proved previously in lecture. (a) For all real numbers x and y, “if x and y are irrational, then x+y is irrational”. (b) For...
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤...
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤ 2 · 4n for all integers n ≥ 3. (b) Let f(n) = 2n+1 + 3n+1 and g(n) = 4n. Using the inequality from part (a) prove that f(n) = O(g(n)). You need to give a rigorous proof derived directly from the definition of O-notation, without using any theorems from class. (First, give a complete statement of the definition. Next, show how f(n) =...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove a statement, or decide if a statement is true or false, then prove or disprove the statement. Prove statements using only the definitions. DO NOT use any set identities or any prior results whatsoever. Disprove false statements by giving counterexample and explaining precisely why your counterexample disproves the claim. ********************************************************************************************************* (5) (12pts) Consider the < relation defined on R as usual, where x <...
1. Prove that the sum of any rational number with an irrational number must be irrational....
1. Prove that the sum of any rational number with an irrational number must be irrational. 2. Prove or disprove: If a,b, and c are integers such that a|(bc), then a|b or a|c.
We are given a sequence of numbers: 1, 3, 5, 7, 9, . . . and...
We are given a sequence of numbers: 1, 3, 5, 7, 9, . . . and want to prove that the closed formula for the sequence is an = 2n – 1.          What would the next number in the sequence be? What is the recursive formula for the sequence? Is the closed formula true for a1? What about a2? What about a3? Critical Thinking How many values would we have to check before we could be sure that the...
4. Let an be the sequence defined by a0 = 0 and an = 2an−1 +...
4. Let an be the sequence defined by a0 = 0 and an = 2an−1 + 2 for n > 1. (a) Find the value of sum 4 i=0 ai . (b) Use induction to prove that an = 2n+1 − 2 for all n ∈ N.
Discrete Math Question: Using the fact that if A < B and C < D, then...
Discrete Math Question: Using the fact that if A < B and C < D, then A + C < B + D Proof the following using mathematical induction: For each integer n with n >= 2, 1 + 3n < 2n^2
5. Prove that the mapping given by f(x) =x^3+1 is a function over the integers. 6....
5. Prove that the mapping given by f(x) =x^3+1 is a function over the integers. 6. Prove that f(x) =x^3+is 1-1 over the integers 7.   Prove that f(x) =x^3+1 is not onto over the integers 8   Prove that 1·2+2·3+3·4+···+n(n+1) =(n(n+1)(n+2))/3.