Question

A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and...

A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and well mixed batch reactor. The initial moles of A and B are both 0.1 mole.  The rate of destruction of A is given by –rA = k*CA*CB, with k =  6.0 L/ (mol*min).  Calculate the amount of time (in minutes) that the reaction must proceed within a 10 L reactor in order to achieve a final concentration of A of 0.001 mol/L. Please express your answer to one decimal place.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a flow reactor. An equal molar feed in A and B enters at 27 oC, and the volumetric flow rate is 2 L/s. The feed concentration is CA0 = 0.1 mol/L. a) Calculate the PFR and CSTR volumes necessary to achieve 85% conversion when the reaction is carried out adiabatically. b) What is the maximum inlet temperature one could have so that the boiling point...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C The reactor feed consists of a mixture of 50% A and 50% B. The reaction rate is: (-rA) = k1*CA*CB - k2*CC2 The inlet temperature is 500 K and the total pressure is 200 kPa. The volumetric feed flow rate is 10 m3/s. The rate constants have a values of: k1 = 0.1 m3/(mol*s) and k2 = 0,05 m3/(mol*s). a) Calculate the conversion of...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400 C) constant-pressure (1 atm) batch reactor in the presence of inerts (I). The initial gas composition in mole fractions is given by yA0 = 0.40; yB0 = 0.40; yC0 = 0.10; yI = 0.10. The reaction is first-order both in A and in B with a rate constant, k = 3.46 x10-2 dm3mol-1 s-1 at 400 C. (a) Set up a stoichiometric table. (b)...
1. A ⇄ B + C The above gas phase elementary reversible reaction is carried out...
1. A ⇄ B + C The above gas phase elementary reversible reaction is carried out isothermally at CSTR at 640°C. The molar flow rate of raw material A is FA0 = 3.34 mol / min and the input concentration is CA0 = 0.04 mol / L. The reaction rate constant kA at 640 ° C is 0.1 mol / (Lꞏminꞏatm). When the equilibrium constant KP is 10 atm, find the corresponding equilibrium conversion Xe and calculate the reactor volume...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227 C) constant-volume batch reactor. The initial feed to the reactor consists of 40 mol% A and 60 mol% B at a total pressure of 10 atm. Measurements of the rate of reaction as a function of conversion yielded the following results: -rA (mol dm^-3 s^-1) x (1x10^8) 0.010 0.005 0.002 0.001 XA   0.0 0.2 0.4 0.6 Calculate the time required to achieve a conversion...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in a flow system with reaction constant,k= 0.07 dm^3mol-1min-1at 300K. The concentrations of each feed stream of A and B is 2 mol dm-3. The volumetric flow rate of each feed stream is 5 dm^3min-1. The two steams are mixed immediately prior to entering the reactor system. This flow system is conducted at 300K with two reactors: a 200 dm^3 stainless steel CSTR and an...
The consecutive liquid phase reactions A (k1,r1) −−−→ B, B (k2,r2) −−−→ C; r1 = k1C2...
The consecutive liquid phase reactions A (k1,r1) −−−→ B, B (k2,r2) −−−→ C; r1 = k1C2 A, r2 = k2CB, occur in a batch reactor with initial composition CA = CA0, CA0 = 3 mol/L, CB0 = CC0 = 0. (a). Solve mass balances for A and B successively to obtain expressions for CA and CB versus t. The expression for CB will be in terms of an integral, which can be evaluated only numerically. Do not bother to evaluate...
The gas phase reaction: 2A+B = 3C , is carried out in an isothermal packed bed...
The gas phase reaction: 2A+B = 3C , is carried out in an isothermal packed bed reactor. The rate is first order with respect to reactants A and B (second order overall) with the rate constant of 14 [liter2 /mole kg of catalyst sec.]. The feed is 50% A, 25 % B and 25 % inert at temperature of 500 K and P = 18 atm and a total flow rate of 20 mole/sec. The exit pressure is measured to...
Task # 3 the first order reaction A → B, with –rA = kCA, takes place...
Task # 3 the first order reaction A → B, with –rA = kCA, takes place in a liquid phase in a CSTR reactor witha volume of 10 l. The velocity constant k equals 2.5 min-1 CA=0.0672 mol/L 3.2 There is an operating accident where the feed flow with A is interrupted and the concentration of A drops to 0 inreactor. How long will it take for the feed to resume (ν0 = 0.12 l / s, CA0 = 0.3mol...
A reactant, A, is polymerized by emulsion polymerization in the droplet phase (i.e., dispersed globules) of...
A reactant, A, is polymerized by emulsion polymerization in the droplet phase (i.e., dispersed globules) of a plug flow reactor. Batch reactor experiments have provided the following overall rate expression for this reaction: -rA = k(CA)2 with k = 1 x10-3 dm3 /mol s . Pure A is fed to the reactor at a concentration of 1mol/dm3 . Determine the space time of the PFR that is necessary to achieve a conversion of 90%.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT