Question

A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and...

A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and well mixed batch reactor. The initial moles of A and B are both 0.1 mole.  The rate of destruction of A is given by –rA = k*CA*CB, with k =  6.0 L/ (mol*min).  Calculate the amount of time (in minutes) that the reaction must proceed within a 10 L reactor in order to achieve a final concentration of A of 0.001 mol/L. Please express your answer to one decimal place.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a flow reactor. An equal molar feed in A and B enters at 27 oC, and the volumetric flow rate is 2 L/s. The feed concentration is CA0 = 0.1 mol/L. a) Calculate the PFR and CSTR volumes necessary to achieve 85% conversion when the reaction is carried out adiabatically. b) What is the maximum inlet temperature one could have so that the boiling point...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C The reactor feed consists of a mixture of 50% A and 50% B. The reaction rate is: (-rA) = k1*CA*CB - k2*CC2 The inlet temperature is 500 K and the total pressure is 200 kPa. The volumetric feed flow rate is 10 m3/s. The rate constants have a values of: k1 = 0.1 m3/(mol*s) and k2 = 0,05 m3/(mol*s). a) Calculate the conversion of...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400 C) constant-pressure (1 atm) batch reactor in the presence of inerts (I). The initial gas composition in mole fractions is given by yA0 = 0.40; yB0 = 0.40; yC0 = 0.10; yI = 0.10. The reaction is first-order both in A and in B with a rate constant, k = 3.46 x10-2 dm3mol-1 s-1 at 400 C. (a) Set up a stoichiometric table. (b)...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227...
The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227 C) constant-volume batch reactor. The initial feed to the reactor consists of 40 mol% A and 60 mol% B at a total pressure of 10 atm. Measurements of the rate of reaction as a function of conversion yielded the following results: -rA (mol dm^-3 s^-1) x (1x10^8) 0.010 0.005 0.002 0.001 XA   0.0 0.2 0.4 0.6 Calculate the time required to achieve a conversion...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in a flow system with reaction constant,k= 0.07 dm^3mol-1min-1at 300K. The concentrations of each feed stream of A and B is 2 mol dm-3. The volumetric flow rate of each feed stream is 5 dm^3min-1. The two steams are mixed immediately prior to entering the reactor system. This flow system is conducted at 300K with two reactors: a 200 dm^3 stainless steel CSTR and an...
A reactant, A, is polymerized by emulsion polymerization in the droplet phase (i.e., dispersed globules) of...
A reactant, A, is polymerized by emulsion polymerization in the droplet phase (i.e., dispersed globules) of a plug flow reactor. Batch reactor experiments have provided the following overall rate expression for this reaction: -rA = k(CA)2 with k = 1 x10-3 dm3 /mol s . Pure A is fed to the reactor at a concentration of 1mol/dm3 . Determine the space time of the PFR that is necessary to achieve a conversion of 90%.
An isothermal CSTR with a first order irreversible reaction A —> B and rA = 0.14...
An isothermal CSTR with a first order irreversible reaction A —> B and rA = 0.14 mol/(ft3*min) has a constant flow rate of 11 f3/min. The reactor volume is 100 ft3. The inlet concentration CAi changes from 6 to 5.5 moles/ft3 (a step change). (a) Determine the process time constant. (b) Determine the steady state gain.
Problem 1 Consider the liquid phase reaction A à products accelerated by a homogeneous catalyst dissolved...
Problem 1 Consider the liquid phase reaction A à products accelerated by a homogeneous catalyst dissolved in the solution. The observed rate data follows the form: -r=k1Ca/(1+K2Ca+K3(Ca^2)) You are asked to recommend either a steady CSTR or steady PFR. Your reactor must reduce the feed composition of 0.6 mole/liter down to 0.3 mole/liter in the effluent. • Create a plot of ordinate 1/(-rA) vs. abscissa CA. Use the data below. Use sufficient resolution in your plot to get a smooth...
Question 2: a- Consider the elementary liquid-phase reaction: A ? B Taking place in A PFR....
Question 2: a- Consider the elementary liquid-phase reaction: A ? B Taking place in A PFR. Determine the space-time taken to reach 80% conversion of A. The value of k is 2.3 s -1 . b- The first-order reaction A? B is carried out in a batch reactor with k = 0.3 min-1 , what is the time (in min) required to consume 90% of A? c- Plot the conversion X against time for the reaction described in b by...
The elementary gas phase reaction A + B C is to be carried out isothermally in...
The elementary gas phase reaction A + B C is to be carried out isothermally in a continuous reactor. Reactants are entering with a stoichiometric proportions at 10 atm and 130°C molar flow rate of 20 mol/min. The exit conversion is 90%. The following data was collected from experimental work T, K kA (min-1) 360 5.38 368 8.35 376 12.73 385 16.34 395 21.23 410 28.61 425 33.81 Estimate the rate constant and the activation energy Calculate the required volume...