Question

The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227...

The irreversible gas-phase non-elementary reaction A + 2B ---> C takes place in an isothermal (227 C) constant-volume batch reactor. The initial feed to the reactor consists of 40 mol% A and 60 mol% B at a total pressure of 10 atm. Measurements of the rate of reaction as a function of conversion yielded the following results:

-rA (mol dm^-3 s^-1) x (1x10^8)

0.010 0.005 0.002 0.001

XA  

0.0 0.2 0.4 0.6

Calculate the time required to achieve a conversion of A of 30%.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C The reactor feed consists of a mixture of 50% A and 50% B. The reaction rate is: (-rA) = k1*CA*CB - k2*CC2 The inlet temperature is 500 K and the total pressure is 200 kPa. The volumetric feed flow rate is 10 m3/s. The rate constants have a values of: k1 = 0.1 m3/(mol*s) and k2 = 0,05 m3/(mol*s). a) Calculate the conversion of...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400 C) constant-pressure (1 atm) batch reactor in the presence of inerts (I). The initial gas composition in mole fractions is given by yA0 = 0.40; yB0 = 0.40; yC0 = 0.10; yI = 0.10. The reaction is first-order both in A and in B with a rate constant, k = 3.46 x10-2 dm3mol-1 s-1 at 400 C. (a) Set up a stoichiometric table. (b)...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in a flow system with reaction constant,k= 0.07 dm^3mol-1min-1at 300K. The concentrations of each feed stream of A and B is 2 mol dm-3. The volumetric flow rate of each feed stream is 5 dm^3min-1. The two steams are mixed immediately prior to entering the reactor system. This flow system is conducted at 300K with two reactors: a 200 dm^3 stainless steel CSTR and an...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a flow reactor. An equal molar feed in A and B enters at 27 oC, and the volumetric flow rate is 2 L/s. The feed concentration is CA0 = 0.1 mol/L. a) Calculate the PFR and CSTR volumes necessary to achieve 85% conversion when the reaction is carried out adiabatically. b) What is the maximum inlet temperature one could have so that the boiling point...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and well mixed batch reactor. The initial moles of A and B are both 0.1 mole.  The rate of destruction of A is given by –rA = k*CA*CB, with k =  6.0 L/ (mol*min).  Calculate the amount of time (in minutes) that the reaction must proceed within a 10 L reactor in order to achieve a final concentration of A of 0.001 mol/L. Please express your answer to...
The isothermal and isobaric gas phase reaction A → B + C follows an elementary rate...
The isothermal and isobaric gas phase reaction A → B + C follows an elementary rate law and is to be carried out in a CSTR. The reaction constant k = 1.20 s-1 when the reaction temperature T = 300 K. (a) When pure A is fed to a CSTR at 300K and a volumetric flow rate of 5 dm3 /s,a conversion of X = 0.6 is achieved. Please determine the volume of the CSTR. (b) If the CSTR’s volume...
The elementary liquid phase reaction takes place in an adiabatic flow reactor. ? + ? →...
The elementary liquid phase reaction takes place in an adiabatic flow reactor. ? + ? → ? An equimolar feed in A and B enters at 300K, and the volumetric flow rate is 2 dm3 /s and CA0= 100 mol/m3 . a) Calculate the PFR and CSTR volumes to achieve 75 % conversion. b) If the outlet temperature of the reactor is 550 K, for complete conversion, calculate the inlet temperature of CSTR. HA°(273 K) = - 20 kcal/mol, HB°...
The elementary gas phase reaction A + B C is to be carried out isothermally in...
The elementary gas phase reaction A + B C is to be carried out isothermally in a continuous reactor. Reactants are entering with a stoichiometric proportions at 10 atm and 130°C molar flow rate of 20 mol/min. The exit conversion is 90%. The following data was collected from experimental work T, K kA (min-1) 360 5.38 368 8.35 376 12.73 385 16.34 395 21.23 410 28.61 425 33.81 Estimate the rate constant and the activation energy Calculate the required volume...
1. A ⇄ B + C The above gas phase elementary reversible reaction is carried out...
1. A ⇄ B + C The above gas phase elementary reversible reaction is carried out isothermally at CSTR at 640°C. The molar flow rate of raw material A is FA0 = 3.34 mol / min and the input concentration is CA0 = 0.04 mol / L. The reaction rate constant kA at 640 ° C is 0.1 mol / (Lꞏminꞏatm). When the equilibrium constant KP is 10 atm, find the corresponding equilibrium conversion Xe and calculate the reactor volume...
Part I The elementary gas phase reaction (CH3)3COOC(CH3)3 --> C2H6 + 2CH3COCH3 is carried out isothermally...
Part I The elementary gas phase reaction (CH3)3COOC(CH3)3 --> C2H6 + 2CH3COCH3 is carried out isothermally in a flow reactor. The reaction rate constant at 500C is 1x10-4 min-1 and the activation energy is 85 kJ/mol. Pure di-tert-butyl peroxide enters the reactor at 10 atm and 127oC and a molar flowrate of 2.5 mol/min. Calculate the reactor volume and space time to achieve 90% conversion in; a) PF reactor b) CSTR reactor c) Propose the diameter (Dt) and length (L)...