Question

Find all values of x and y such that fx(x, y) = 0 and fy(x, y)...

Find all values of x and y such that fx(x, y) = 0 and fy(x, y) = 0 simultaneously.

f(x, y) = x2 + 3xy + y2 − 19x − 16y + 40

(x,y) = ( ___ , ___ )

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B....
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B. ∂f∂y=fy=∂f∂y=fy= C. ∂2f∂x2=fxx=∂2f∂x2=fxx= D. ∂2f∂y2=fyy=∂2f∂y2=fyy= E. ∂2f∂x∂y=fyx=∂2f∂x∂y=fyx= F. ∂2f∂y∂x=fxy=∂2f∂y∂x=fxy=
If f(x, y) = 49 − 7x2 − y2 , find fx(1, 2) and fy(1, 2)...
If f(x, y) = 49 − 7x2 − y2 , find fx(1, 2) and fy(1, 2) and interpret these numbers as slopes. fx(1, 2) = fy(1, 2) =
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the...
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the partial derivatives of the function f(x,y)=x^6y^6/x^2+y^2 fx(x,y)= fy(x,y)= part 3) Find all first- and second-order partial derivatives of the function f(x,y)=2x^2y^2−2x^2+5y fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 4) Find all first- and second-order partial derivatives of the function f(x,y)=9ye^(3x) fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 5) For the function given below, find the numbers (x,y) such that fx(x,y)=0 and fy(x,y)=0 f(x,y)=6x^2+23y^2+23xy+4x−2 Answer: x= and...
Let f(x, y) = 2x^3y^2 + 3xy^3 4x^3 y. Find (a) fx (c) fxx (b) fy...
Let f(x, y) = 2x^3y^2 + 3xy^3 4x^3 y. Find (a) fx (c) fxx (b) fy (d) fyy (e) fxy (f) fyx
Consider the function f(x,y) = xe^((x^2)-(y^2)) (a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find...
Consider the function f(x,y) = xe^((x^2)-(y^2)) (a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find a linear approximation for f (1.1, −0.9). (b) Find fxx(1, −1), fxy(1, −1), fyy(1, −1). Use these values to find a quadratic approximation for f(1.1,−0.9).
Let joint CDF Fx,y (x,y) = сxy(x2 + y2) for 0 ≤ x ≤ 1, 0...
Let joint CDF Fx,y (x,y) = сxy(x2 + y2) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Find а) constant с. b) Fx|y (x|y) for x = 0.5, y = 0.5.  
Question about using the convolution of distribution: 1. we have the formula: integral fx(x)fy(z-x)dx=integral fx(z-x)fy(x)dx I...
Question about using the convolution of distribution: 1. we have the formula: integral fx(x)fy(z-x)dx=integral fx(z-x)fy(x)dx I know this are equivalent. However, how do I decide which side I should use ? For example,X~Exp(1) and Y~Unif [0,1] X and Y independnt and the textbook use fx(z-x)fy(x)dx. However, can I use the left hand side fx(x)fy(z-x)dx???is there any constraint for using left or right or actually both can lead me to the right answer??? 2. For X and Y are independent and...
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2)...
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2) b) Determine fx(x|y=y2) Ans: 1d(x-x2) c) Determine fy(y|x=x1) Ans: (1/3)d(y-y1)+(2/3)d(y-y3) d) Determine fx(y|x=x2) Ans: (3/9)d(y-y1)+(1/9)d(y-y2)+(5/9)d(y-y3) 4.4-JG2 Given fx,y(x,y)=2(1-xy) for 0 a) fx(x|y=0.5) (Point Conditioning) Ans: (4/3)(1-x/2) b) fx(x|0.5
Find the absolute maximum and minimum values of f on the set D. f(x, y) =...
Find the absolute maximum and minimum values of f on the set D. f(x, y) = 4x + 6y − x2 − y2 + 8, D = {(x, y) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 5} Find the absolute maximum and minimum values of f on the set D. f(x, y) = 2x3 + y4 + 2,    D = {(x, y) | x2 + y2 ≤ 1}
Let fx,y (x,y) = 3 e^-(x+y) for 0 < x <1/2y and y>0. a) Find f...
Let fx,y (x,y) = 3 e^-(x+y) for 0 < x <1/2y and y>0. a) Find f x(x) and f y( y) .  b) Write out the integral necessary to find , Fx,y ( u v) . DO NOT EVALUATE THE INTEGRAL.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT